2 / 2
Mar 17

I have an aggregation that produces data that contains embedded documents as:

{ "_id": { "$oid": "65816a666771a1d4de33eb68" }, "diet_included": [ { "label": "banana", "_id": "62af112dbe66bc92f8ceabcb", "type": "foodLabel", "labelId": 46, "optionCategoryIdsForConflicts": [ 13200, 90020, 91020 ], "foodLabel": "banana", "categoriesNames": [] }, { "label": "carrot", "_id": "62af113cbe66bc92f8ceac20", "type": "foodLabel", "labelId": 131, "optionCategoryIdsForConflicts": [ 18170, 91010 ], "foodLabel": "carrot", "categoriesNames": [] }, { "label": "eggplant", "_id": "62af115cbe66bc92f8ceacd4", "type": "foodLabel", "labelId": 311, "optionCategoryIdsForConflicts": [ 18080, 61000, 90020 ], "foodLabel": "eggplant", "categoriesNames": [] } ], "matchedLabels": { "matchBased": [ { "name": "None" }, { "name": "Pescatarian" }, { "name": "L_Vit. A" } ], "noMatchedMicro": [], "userIncludedFoodLabels": [ "banana", "carrot", "eggplant" ] } } I can successfully extract the data using the pandas library result = col.aggrerate(agg) df = pandas.DataFrame(result) However this doesnt work with polars.DataFrame or with pymongoarrow aggregate_polars_all. This is more of an irritant than a show stopper, but it raises the concern that perhaps polars a) isn't compatible with 3.11 or that pymongo is the cause So anyone gone too far on the bleeding edge?