
Building Real-time
Mobile Apps that Scale

2

Introduction
Mobile has impacted every aspect of our lives.
Whether we are looking to schedule grocery
deliveries, find our next apartment, or schedule
a doctor appointment, we can confidently say
“there’s an app for that”.

Conditioned by years of chart topping apps
like TikTok, Instagram, and Spotify, mobile users
expect to be able to collaborate in real-time
without noticeable delays. Users also expect to
feel connected at all times even if their internet
connection is spotty – nothing’s more frustrating
than seeing a gray screen with the dreaded “no
internet connection”.

This means mobile developers need to build
reactive, collaborative, always-on experiences
into all of their mobile apps. But building real-time
mobile apps is hard. It requires keeping a mobile
database and the backend in sync at all times
regardless of connectivity issues or data conflicts.
Traditionally, developers have had to turn to one of
two approaches:

1. Use REST APIs to connect the client-side mobile
database to the backend. However, building a
synchronization mechanism is complicated and
requires thousands of lines of complex, non-
differentiating code – reducing development

velocity, compromising user experience, and
escalating costs.

2. Integrate off-the-shelf synchronization
solutions that work between your mobile
database and your backend to keep the two in
sync. Off-the-shelf solutions give developers the
ability to build an MVP app fast. However, the
development time saved during MVP is spent
later when developers need to build out lots of
custom code to compensate for the limitations
of overly simplistic sync engines – again leading
to major bottlenecks when looking to scale
down the road.

MongoDB Atlas Device Sync gives you a much
better way. With industry-leading features like
field-level permissions and dynamic querying
based on user inputs, Device Sync provides
developers with total control over what data
is synced and when, enabling even the most
complex use cases out-of-the-box.

In this white paper, we dig deeper into the
challenges of building real-time mobile apps that
scale today and how that’s transformed with Atlas
Device Sync. We discuss use cases for Device Sync
and provide real examples of how thousands of
businesses are using it today.

The Trouble with Real-Time
Although a real-time experience is essential for
every mobile application, building it isn’t easy.
Application owners need to consider how to store
data on device when connectivity drops, how to
sync that data back to cloud upon reconnection,
and how to handle any conflicts that might
emerge if multiple users or devices were making
changes at once.

To address these requirements, developers use
a three part architecture: 1) a mobile database
2) a cloud database and 3) a synchronization
mechanism that keeps data up-to-date across
users, devices, and the backend.

http://www.mongodb.com/atlas/app-services/device-sync?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=awareness&utm_content=device_sync1

3

Option 1: Build it yourself
Because it is easy to understand the concepts
of design for real-time, building it yourself would
seem to be the simple choice. You can maintain
control over what data is synced between the
device and the cloud, designing a solution specific
to your apps needs.

However, as developers begin to build for real-
time, what may have initially seemed simple to
build yourself reveals itself to be significantly more
complicated in practice.

The hidden pains of data
synchronization
Many developers initially view data synchronization
as three steps: 1) application request 2) received
data and 3) update UI. What that process fails to
account for is the host of technical challenges that
come with building for mobile.

These include:

• Supporting offline mode. When data is
requested, applications need to understand
whether a network is available, and if not,
whether the appropriate data is stored locally,
leading to complex query, retry, and error
handling logic.

• Handling lost connections. When data is written
offline, it must be flagged or tagged as such.
When the app reconnects, any tagged data is
sent to the server. It’s not enough to just save
the changes locally. Even if data is written when
an app is online, your logic needs to handle add
the edge cases of network failure/retry or risk
losing data.

• Managing conflict resolution. Imagine a
scenario in which an offline user deletes data
while another offline user updates it at the same
time. It’s difficult to determine the final state of
this information. Who should win?

• Balancing technical trade-offs. As you build
your data sync, you must consider the size of
your app, how much space it consumes on the
user’s device, and its power consumption.

On top of these unique technical challenges are
all the traditional concerns of building any piece
of software: security, performance, stack expertise
of current staff, and the ability to hire support
engineers. What may have initially seemed simple
to build yourself reveals itself to be significantly
more complicated in practice.

What you think building sync will look like

What it actually looks like

App online? Request sent Response received Correct data

Retry?

Complex retry & error handling CrashWithout careful
programming

Offline

Request tim
es out

A
pp stays online?

Server error

C
orrectly form

atted?

Invalid data

Application Request Received Data Update UI

Expected data?

Write conflicts?

4

Option 2: Integrate an off-the-shelf
synchronization service
A better option is to use an existing service that has
already solved all of the problems detailed above.
Strong synchronization solutions enable handling
intermittent network connections and conflicting
changes to data, as well as offer comprehensive
access controls and security features.

Many off-the-shelf services appear to satisfy these
requirements on paper and make it easy to build
to MVP. But fall short when scalability and data
complexity become factors.

Hitting the limits of
off-the-shelf solutions
Many synchronization solutions work well for
quickly iterating to a minimum viable product.
However, many apps quickly reach the limitations
of the off-the-shelf solutions and developers revert
back to move to more custom solutions to gain
flexibility, control, and performance.

Common limitations include:

• Query constraints. The lack of aggregation
support is common in off-the-shelf solutions and
can often lead to the overfetching of documents
– forcing developers to handle operations
in their own code and slowing offline app
performance.

• “Last write wins”. Most services default to the
“last write wins” approach to conflict resolution
which could lead to significant data loss if
multiple users are writing to the same document
while offline.

• Permissioning. Many apps handle sensitive data
like PII where it is important to only sync data
based on a user’s role. This level of granularity
and control is oftentimes missing all together
from out-of-the-box solutions.

• Cloud Vendor Lock-in. Many services only work
with one cloud vendor leading to lock-in issues
down the road.

To handle these challenges, many developers
combine off-the-shelf solutions with custom code
and workarounds, complicating the architecture
and impacting the long-term scalability and
performance of the application.

5

MongoDB Atlas Device Sync: A Better Approach
MongoDB Atlas Device Sync is the fastest and
easiest way to build and maintain real-time,
reactive mobile apps that scale. It combines the
power of Realm – the same mobile database

underpinning the world’s most popular
applications – with the developer productivity,
scale, and resilience of MongoDB Atlas.

How does Atlas Device Sync work?
Atlas Device Sync is part of the MongoDB Atlas developer data platform. Its data synchronization
service works alongside Realm to synchronize data bi-directionally, between Realm on the client and
MongoDB Atlas in the cloud.

iOS

App

Device
Sync

Android

App

Realm RealmAtlas

http://www.mongodb.com/atlas/app-services/device-sync?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=awareness&utm_content=device_sync2
https://realm.io?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=awareness&utm_content=realm
https://www.mongodb.com/atlas/database?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=awareness&utm_content=atlas

6

Dynamic querying
Atlas Device Sync lets you use language-native
queries to define the data synced to user
applications. This more closely mirrors how you are
used to building applications today – using GET
requests with query parameters – making it easy
to learn and fast to build to MVP.

Device Sync avoids the typical query limitations
of other solutions by supporting dynamic,
overlapping queries based on user inputs.

Picture a retail app that allows users to search
available inventory. As users define inputs – show
all jeans that are size 8 and less than $40 – the
query parameters can be combined with logical
ANDs and ORs to produce increasingly complex
queries, and narrow down the search result even
further. In the same application, employees can
quickly limit inventory results to only their store’s
stock, pulling from the same set of documents as
the customer, without worrying about overlap.

MongoDB Atlas

Flexible Sync

"category == 'Jeans' AND
size == 8 AND price < 40"

Customer

"Inventory.store == 101"

Store

Flexible Sync

7

Advanced conflict resolution
Beyond the ‘last write wins’ approach that is
offered in many out-of-the-box solutions, Device
Sync offers operational transformation – a set of
rules that guarantee strong eventual consistency.

Strong eventual consistency means all clients’
versions will eventually converge to identical
states. This will be true even if changes were made
in a different order like in situations where multiple
devices are writing while offline.

The conflict resolution engine follows four rules:
deletes always win, the last update wins at the
field-level, inserts in lists are ordered by time, and
increment/decrements will be preserved.

Fine-grained permissioning
Whether it’s a company’s internal application or
an app on the App Store, permissions are required

in almost every application. That’s why Atlas
Device Sync enables field-level permissioning
when syncing data – meaning synced documents
can be limited based on a user’s role.

Consider how an emergency room team would
use their hospital’s application. A resident should
only be able to access her patients’ charts while
her fellow needs to be able to see the entire care
team’s charts, and an administrator might be able
to see all patients staying in the hospital, but not
view any fields pertaining to their medical records.
In Flexible Sync, a user’s role will be combined with
the client-side query to determine the appropriate
result set. For example, when the resident above
filters to view all patient charts the permission
system will automatically limit the results to only
her patients.

{
 "_id": {
 "$oid": "60e51a64d0ff67f998bc"
 },
 "name": "Ian Ward",
 "address": {
 "street": "Bedford Ave"
 "city": "New York"
 }
 "billing": {
 "creditCard": "1234123412341234"
 "balance": "20"
 }
 "vitals": [{
 "visitDate": "May62022”
 "bpm": "80”
 "bloodPressure": "120/80"
]}
 "prescriptions":[{
 "name": "tylenol”
 "quantity": "20”}
]}
}

May 6th Visit Log

Synced Fields: ID, Name, Address, Billing

Accounting

Synced Fields: All

Patient

Synced Fields: ID, Name, Vitals, Prescription

Doctor

ID

Name
Address

Billing

Vitals

Prescription

A complete developer data platform
Atlas Device Sync is built on top of MongoDB, the
most popular and widely used modern database
in the market. MongoDB has become so popular
because engineering teams can build and ship

applications faster than other data platforms.
You can get started with both MongoDB Atlas and
Atlas Device Sync in minutes on a fully managed
service that handles operations for you — on any
cloud you choose.

8

Atlas Device Sync in Action
FloBiz is an Indian startup on a mission to help
millions of SMBs move away from pen and paper
and take advantage of digitization. The startup’s
flagship offering —myBillBook — helps over a million
monthly users digitize their invoicing, streamline
business accounting and automate workflows of
their enterprises and runs entirely on MongoDB
Atlas with the help of Device Sync and Realm.

Atlas Device Sync handles the difficult job of
keeping the mobile, desktop, and web apps in
sync. This means even if multiple users were using
the same account, going offline and online, there
would be no issues, duplications or lost data.

The large multi-national convenience store
7-Eleven uses MongoDB Atlas Device Sync and
Realm for an end-to-end inventory solution. The
app provides a real-time and exact view of when
sales and deliveries arrive. Currently, 8,500 stores
use this app with data staying synced across
20,000 devices in real-time.

Cue Health is a healthcare technology company
pioneering the digital transformation of

personalized health information, beginning with
diagnostics. Cue Health’s offering combines
breakthrough science with connected software
solutions that makes it easy for healthcare
providers, enterprises, and individuals to manage
real-time and actionable health information,
offering easy access to lab-quality diagnostics
anywhere, anytime in a device that fits in the
palm of the hand. The company chose MongoDB
Atlas, Search and Device Sync to power its Cue
Health App.

A large French fashion brand is using Atlas
Device Sync to power its mobile in-store checkout
experience. Prior to Atlas Device Sync, the portable
POS devices were constantly crashing and losing
transaction data. Naturally, employees began
reverting to the traditional checkout process.

With Atlas Device Sync and Realm, the POS
systems have stopped crashing and reliably sync
back to the cloud in real-time, so the brand’s
connected systems have the most up-to-date
data to work with.

https://www.mongodb.com/atlas/database

© May 2022 MongoDB, Inc. All rights reserved.

Try Atlas Device Sync on a free cluster
today and see for yourself.

Safe Harbor
The development, release, and timing of any features or functionality described for our products
remains at our sole discretion. This information is merely intended to outline our general product
direction, and it should not be relied on in making a purchasing decision, nor is this a commitment,
promise, or legal obligation to deliver any material, code, or functionality.

Getting Started with Atlas Device Sync
Atlas Device Sync is self–service and easy to get
started with. If you don’t already have one, sign up
for a free MongoDB Atlas account.

Atlas Device Sync is available with all Atlas
clusters – including free clusters – so you can
evaluate it at no cost. Our Getting Started tutorial
steps you through the process. Device Sync
documentation provides and complete references
on how to configure, manage, and deploy Sync
in you application, along with performance
recommendations. The MongoDB Developer Hub
and MongoDB YouTube channel provide a wealth
of articles and tutorials for beginners through to
expert users.

Our professional services team can also support
you at any stage of your application lifecycle.
They can partner with you throughout a project
to implement sophisticated solutions, including
Atlas Device Sync and other components of the
MongoDB Atlas developer data platform, as well
as help derive longer-term strategic initiatives.

Whether you are building a new application,
extending an existing MongoDB workload, or
looking to simplify your mobile architecture,
Atlas Device Sync makes it easy to get started,
and makes your user experiences more engaging
and delightful.

http://www.mongodb.com/realm/register?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=evaluation&utm_content=atlas_register2
http://www.mongodb.com/realm/register?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=evaluation&utm_content=atlas_register2
http://www.mongodb.com/realm/register?utm_campaign=thought_leadership&utm_source=cta_link&utm_medium=asset&utm_term=evaluation&utm_content=atlas_register

	_oz7hi2w4o70w
	_vxsr12rl29nz
	_nc3kz0vdgibd
	_na30qn6r9qqy
	_9xc3g743mggl
	_5o48lqcvgagw
	_6ghjviugntaz
	_26p4y3cypdl8
	_piykdkl9b7ti
	_la55hgap6mpt
	_ji9mlsqj3bc
	_img0d14ibl0z
	_7p3n8j4xg57q

