Map-Reduce Examples
Note
Aggregation Pipeline as Alternative to Map-Reduce
An aggregation pipeline provides better performance and usability than a map-reduce operation.
Map-reduce operations can be rewritten using aggregation
pipeline operators, such as
$group
, $merge
, and others.
For map-reduce operations that require custom functionality, MongoDB
provides the $accumulator
and $function
aggregation operators. Use these operators to define custom aggregation
expressions in JavaScript.
In mongosh
, the db.collection.mapReduce()
method is a wrapper around the mapReduce
command. The
following examples use the db.collection.mapReduce()
method.
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Create a sample collection orders
with these documents:
db.orders.insertMany([ { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" }, { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" }, { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" }, { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"}, { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" } ])
Return the Total Price Per Customer
Perform the map-reduce operation on the orders
collection to group
by the cust_id
, and calculate the sum of the price
for each
cust_id
:
Define the map function to process each input document:
In the function,
this
refers to the document that the map-reduce operation is processing.The function maps the
price
to thecust_id
for each document and emits thecust_id
andprice
.
var mapFunction1 = function() { emit(this.cust_id, this.price); }; Define the corresponding reduce function with two arguments
keyCustId
andvaluesPrices
:The
valuesPrices
is an array whose elements are theprice
values emitted by the map function and grouped bykeyCustId
.The function reduces the
valuesPrice
array to the sum of its elements.
var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); }; Perform map-reduce on all documents in the
orders
collection using themapFunction1
map function and thereduceFunction1
reduce function:db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } ) This operation outputs the results to a collection named
map_reduce_example
. If themap_reduce_example
collection already exists, the operation will replace the contents with the results of this map-reduce operation.Query the
map_reduce_example
collection to verify the results:db.map_reduce_example.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate([ { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, { $out: "agg_alternative_1" } ])
The
$group
stage groups by thecust_id
and calculates thevalue
field (See also$sum
). Thevalue
field contains the totalprice
for eachcust_id
.The stage output the following documents to the next stage:
{ "_id" : "Don Quis", "value" : 155 } { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Busby Bee", "value" : 125 } Then, the
$out
writes the output to the collectionagg_alternative_1
. Alternatively, you could use$merge
instead of$out
.Query the
agg_alternative_1
collection to verify the results:db.agg_alternative_1.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Tip
See also:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Calculate Order and Total Quantity with Average Quantity Per Item
In the following example, you will see a map-reduce operation on the
orders
collection for all documents that have an ord_date
value
greater than or equal to 2020-03-01
.
The operation in the example:
Groups by the
item.sku
field, and calculates the number of orders and the total quantity ordered for eachsku
.Calculates the average quantity per order for each
sku
value and merges the results into the output collection.
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.
Example steps:
Define the map function to process each input document:
In the function,
this
refers to the document that the map-reduce operation is processing.For each item, the function associates the
sku
with a new objectvalue
that contains thecount
of1
and the itemqty
for the order and emits thesku
(stored in thekey
) and thevalue
.
var mapFunction2 = function() { for (var idx = 0; idx < this.items.length; idx++) { var key = this.items[idx].sku; var value = { count: 1, qty: this.items[idx].qty }; emit(key, value); } }; Define the corresponding reduce function with two arguments
keySKU
andcountObjVals
:countObjVals
is an array whose elements are the objects mapped to the groupedkeySKU
values passed by map function to the reducer function.The function reduces the
countObjVals
array to a single objectreducedValue
that contains thecount
and theqty
fields.In
reducedVal
, thecount
field contains the sum of thecount
fields from the individual array elements, and theqty
field contains the sum of theqty
fields from the individual array elements.
var reduceFunction2 = function(keySKU, countObjVals) { reducedVal = { count: 0, qty: 0 }; for (var idx = 0; idx < countObjVals.length; idx++) { reducedVal.count += countObjVals[idx].count; reducedVal.qty += countObjVals[idx].qty; } return reducedVal; }; Define a finalize function with two arguments
key
andreducedVal
. The function modifies thereducedVal
object to add a computed field namedavg
and returns the modified object:var finalizeFunction2 = function (key, reducedVal) { reducedVal.avg = reducedVal.qty/reducedVal.count; return reducedVal; }; Perform the map-reduce operation on the
orders
collection using themapFunction2
,reduceFunction2
, andfinalizeFunction2
functions:db.orders.mapReduce( mapFunction2, reduceFunction2, { out: { merge: "map_reduce_example2" }, query: { ord_date: { $gte: new Date("2020-03-01") } }, finalize: finalizeFunction2 } ); This operation uses the
query
field to select only those documents withord_date
greater than or equal tonew Date("2020-03-01")
. Then it outputs the results to a collectionmap_reduce_example2
.If the
map_reduce_example2
collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
map_reduce_example2
collection to verify the results:db.map_reduce_example2.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate( [ { $match: { ord_date: { $gte: new Date("2020-03-01") } } }, { $unwind: "$items" }, { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } }, { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } }, { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } } ] )
The
$match
stage selects only those documents withord_date
greater than or equal tonew Date("2020-03-01")
.The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$group
stage groups by theitems.sku
, calculating for each sku:- The
qty
field. Theqty
field contains the - total
qty
ordered per eachitems.sku
(See$sum
).
- The
- The
orders_ids
array. Theorders_ids
field contains an - array of distinct order
_id
's for theitems.sku
(See$addToSet
).
- The
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$group
stage groups by theitems.sku
, calculating for each sku:The
qty
field. Theqty
field contains the totalqty
ordered per eachitems.sku
using$sum
.The
orders_ids
array. Theorders_ids
field contains an array of distinct order_id
's for theitems.sku
using$addToSet
.
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:the
value.count
to the size of theorders_ids
array using$size
.the
value.qty
to theqty
field of input document.the
value.avg
to the average number of qty per order using$divide
and$size
.
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } Finally, the
$merge
writes the output to the collectionagg_alternative_3
. If an existing document has the same key_id
as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
agg_alternative_3
collection to verify the results:db.agg_alternative_3.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip
See also:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.