Docs Menu
Docs Home
/ / /
PyMongoArrow

Schema Examples

On this page

  • Nested Data with Schema
  • Nested Data with Projections

This guide shows examples of how to use PyMongoArrow schemas in common situations.

When performing aggregate or find operations, you can provide a schema for nested data by using the struct object. There can be conflicting names in sub-documents compared to their parent documents.

>>> from pymongo import MongoClient
... from pymongoarrow.api import Schema, find_arrow_all
... from pyarrow import struct, field, int32
... coll = MongoClient().db.coll
... coll.insert_many(
... [
... {"start": "string", "prop": {"name": "foo", "start": 0}},
... {"start": "string", "prop": {"name": "bar", "start": 10}},
... ]
... )
... arrow_table = find_arrow_all(
... coll, {}, schema=Schema({"start": str, "prop": struct([field("start", int32())])})
... )
... print(arrow_table)
pyarrow.Table
start: string
prop: struct<start: int32>
child 0, start: int32
----
start: [["string","string"]]
prop: [
-- is_valid: all not null
-- child 0 type: int32
[0,10]]

You can do the same thing when using Pandas and NumPy:

>>> df = find_pandas_all(
... coll, {}, schema=Schema({"start": str, "prop": struct([field("start", int32())])})
... )
... print(df)
start prop
0 string {'start': 0}
1 string {'start': 10}

You can also use projections to flatten the data before passing it to PyMongoArrow. The following example illustrates how to do this by using a very simple nested document structure:

>>> df = find_pandas_all(
... coll,
... {
... "prop.start": {
... "$gte": 0,
... "$lte": 10,
... }
... },
... projection={"propName": "$prop.name", "propStart": "$prop.start"},
... schema=Schema({"_id": ObjectIdType(), "propStart": int, "propName": str}),
... )
... print(df)
_id propStart propName
0 b'c\xec2\x98R(\xc9\x1e@#\xcc\xbb' 0 foo
1 b'c\xec2\x98R(\xc9\x1e@#\xcc\xbc' 10 bar

When performing an aggregate operation, you can flatten the fields by using the $project stage, as shown in the following example:

>>> df = aggregate_pandas_all(
... coll,
... pipeline=[
... {"$match": {"prop.start": {"$gte": 0, "$lte": 10}}},
... {
... "$project": {
... "propStart": "$prop.start",
... "propName": "$prop.name",
... }
... },
... ],
... )

Back

Data Types