Docs Menu
Docs Home
/
MongoDB Atlas
/ /

Build a Local RAG Implementation with Atlas Vector Search

On this page

  • Background
  • Prerequisites
  • Create a Local Deployment or Atlas Cluster
  • Set Up the Environment
  • Generate Embeddings with a Local Model
  • Create the Atlas Vector Search Index
  • Answer Questions with the Local LLM

This tutorial demonstrates how to implement retrieval-augmented generation (RAG) locally, without the need for API keys or credits. To learn more about RAG, see Retrieval-Augmented Generation (RAG) with Atlas Vector Search.

Specifically, you perform the following actions:

  1. Create a local Atlas deployment or deploy a cluster on the cloud.

  2. Set up the environment.

  3. Use a local embedding model to generate vector embeddings.

  4. Create an Atlas Vector Search index on your data.

  5. Use a local LLM to answer questions on your data.


➤ Use the Select your language drop-down menu to set the language of the examples on this page.


To complete this tutorial, you can either create a local Atlas deployment by using the Atlas CLI or deploy a cluster on the cloud. The Atlas CLI is the command-line interface for MongoDB Atlas, and you can use the Atlas CLI to interact with Atlas from the terminal for various tasks, including creating local Atlas deployments. To learn more, see Manage Local and Cloud Deployments from the Atlas CLI.

Note

Local Atlas deployments are intended for testing only. For production environments, deploy a cluster.

You also use the following open-source models in this tutorial:

There are several ways to download and deploy LLMs locally. In this tutorial, you download Ollama and pull the open source models listed above to perform RAG tasks.

This tutorial also uses the Go language port of LangChain, a popular open-source LLM framework, to connect to these models and integrate them with Atlas Vector Search. If you prefer different models or a different framework, you can adapt this tutorial by replacing the Ollama model names or LangChain library components with their equivalents for your preferred setup.

There are several ways to download and deploy LLMs locally. In this tutorial, you download Ollama and pull the following open source models to perform RAG tasks:

This tutorial also uses LangChain4j, a popular open-source LLM framework for Java, to connect to these models and integrate them with Atlas Vector Search. If you prefer different models or a different framework, you can adapt this tutorial by replacing the Ollama model names or LangChain4j library components with their equivalents for your preferred setup.

You also use the following open-source models in this tutorial:

There are several ways to download and deploy LLMs locally. In this tutorial, you download the Mistral 7B model by using GPT4All, an open-source ecosystem for local LLM development.

When working through this tutorial, you use an interactive Python notebook. This environment allows you to create and execute individual code blocks without running the entire file each time.

You also use the following open-source models in this tutorial:

There are several ways to download and deploy LLMs locally. In this tutorial, you download the Mistral 7B model by using GPT4All, an open-source ecosystem for local LLM development.

To complete this tutorial, you must have the following:

To complete this tutorial, you must have the following:

  • Java Development Kit (JDK) version 8 or later.

  • An environment to set up and run a Java application. We recommend that you use an integrated development environment (IDE) such as IntelliJ IDEA or Eclipse IDE to configure Maven or Gradle to build and run your project.

To complete this tutorial, you must have the following:

To complete this tutorial, you must have the following:

  • The Atlas CLI installed and running v1.14.3 or later.

  • MongoDB Command Line Database Tools installed.

  • An interactive Python notebook that you can run locally. You can run interactive Python notebooks in VS Code. Ensure that your environment runs Python v3.10 or later.

Note

If you use a hosted service such as Colab, ensure that you have enough RAM to run this tutorial. Otherwise, you might experience performance issues.

This tutorial requires a local or cloud Atlas deployment loaded with the sample AirBnB listings dataset to use as a vector database.

If you have an existing Atlas cluster running MongoDB version 6.0.11, 7.0.2, or later with the sample_airbnb.listingsAndReviews sample data loaded, you can skip this step.

You can create a local Atlas deployment using the Atlas CLI or deploy a cluster on the cloud.

You can create a local deployment using the Atlas CLI.

1

In your terminal, run atlas auth login to authenticate with your Atlas login credentials. To learn more, see Connect from the Atlas CLI.

Note

If you don't have an existing Atlas account, run atlas setup or create a new account.

2

Run atlas deployments setup and follow the prompts to create a local deployment.

For detailed instructions, see Create a Local Atlas Deployment.

3
  1. Run the following command in your terminal to download the sample data:

    curl https://atlas-education.s3.amazonaws.com/sampledata.archive -o sampledata.archive
  2. Run the following command to load the data into your deployment, replacing <port-number> with the port where you're hosting the deployment:

    mongorestore --archive=sampledata.archive --port=<port-number>

    Note

    You must install MongoDB Command Line Database Tools to access the mongorestore command.

You can create and deploy a new cluster using the Atlas CLI or Atlas UI. Ensure that you preload the new cluster with the sample data.

To learn how to load the sample data provided by Atlas into your cluster, see Load Sample Data.

For detailed instructions, see Create a Cluster.

In this section, you set up the environment for this tutorial. Create a project, install the required packages, and define a connection string:

1

Run the following commands in your terminal to create a new directory named local-rag-mongodb and initialize your project:

mkdir local-rag-mongodb
cd local-rag-mongodb
go mod init local-rag-mongodb
2

Run the following commands:

go get github.com/joho/godotenv
go get go.mongodb.org/mongo-driver/mongo
go get github.com/tmc/langchaingo/llms
go get github.com/tmc/langchaingo/llms/ollama
go get github.com/tmc/langchaingo/prompts
3

In your project, create a .env file to store your connection string.

.env
ATLAS_CONNECTION_STRING = "<connection-string>"

Replace the <connection-string> placeholder value with your Atlas connection string.

If you're using a local Atlas deployment, your connection string follows this format, replacing <port-number> with the port for your local deployment.

ATLAS_CONNECTION_STRING = "mongodb://localhost:<port-number>/?directConnection=true"

If you're using an Atlas cluster, your connection string follows this format, replacing "<connection-string>"; with your Atlas cluster's SRV connection string:

ATLAS_CONNECTION_STRING = "<connection-string>"

Note

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

In this section, you set up the environment for this tutorial. Create a project, install the required packages, and define a connection string:

1
  1. From your IDE, create a Java project named local-rag-mongodb using Maven or Gradle.

  2. Add the following dependencies, depending on your package manager:

    If you are using Maven, add the following dependencies to the dependencies array in your project's pom.xml file:

    pom.xml
    <dependencies>
    <!-- MongoDB Java Sync Driver v5.2.0 or later -->
    <dependency>
    <groupId>org.mongodb</groupId>
    <artifactId>mongodb-driver-sync</artifactId>
    <version>[5.2.0,)</version>
    </dependency>
    <!-- Java library for working with Ollama -->
    <dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-ollama</artifactId>
    <version>0.35.0</version>
    </dependency>
    </dependencies>

    If you are using Gradle, add the following to the dependencies array in your project's build.gradle file:

    build.gradle
    dependencies {
    // MongoDB Java Sync Driver v5.2.0 or later
    implementation 'org.mongodb:mongodb-driver-sync:[5.2.0,)'
    // Java library for working with Ollama
    implementation 'dev.langchain4j:langchain4j-ollama:0.35.0'
    }
  3. Run your package manager to install the dependencies to your project.

2

Note

This example sets the variable in the IDE. Production applications might manage environment variables through a deployment configuration, CI/CD pipeline, or secrets manager, but you can adapt the provided code to fit your use case.

In your IDE, create a new configuration template and add the following variables to your project:

  • If you are using IntelliJ IDEA, create a new Application run configuration template, then add your variables as semicolon-separated values in the Environment variables field (for example, FOO=123;BAR=456). Apply the changes and click OK.

    To learn more, see the Create a run/debug configuration from a template section of the IntelliJ IDEA documentation.

  • If you are using Eclipse, create a new Java Application launch configuration, then add each variable as a new key-value pair in the Environment tab. Apply the changes and click OK.

    To learn more, see the Creating a Java application launch configuration section of the Eclipse IDE documentation.

Replace the <port-number> with the port for your local deployment.

Your connection string should follow the following format:

ATLAS_CONNECTION_STRING = "mongodb://localhost:<port-number>/?directConnection=true"

Replace the <connection-string> placeholder value with the SRV connection string for your Atlas cluster.

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

In this section, you set up the environment for this tutorial. Create a project, install the required packages, and define a connection string:

1

Run the following commands in your terminal to create a new directory named local-rag-mongodb and initialize your project:

mkdir local-rag-mongodb
cd local-rag-mongodb
npm init -y
2

Run the following command:

npm install mongodb @xenova/transformers node-gyp gpt4all
3

In your project's package.json file, specify the type field as shown in the following example, and then save the file.

package.json
{
"name": "local-rag-mongodb",
"type": "module",
...
}
4

In your project, create a .env file to store your connection string.

.env
ATLAS_CONNECTION_STRING = "<connection-string>"

Replace the <connection-string> placeholder value with your Atlas connection string.

If you're using a local Atlas deployment, your connection string follows this format, replacing <port-number> with the port for your local deployment.

ATLAS_CONNECTION_STRING = "mongodb://localhost:<port-number>/?directConnection=true";

If you're using an Atlas cluster, your connection string follows this format, replacing "<connection-string>"; with your Atlas cluster's SRV connection string:

ATLAS_CONNECTION_STRING = "<connection-string>";

Note

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

Note

Minimum Node.js Version Requirements

Node.js v20.x introduced the --env-file option. If you are using an older version of Node.js, add the dotenv package to your project, or use a different method to manage your environment variables.

In this section, you set up the environment for this tutorial.

1

Run the following commands in your terminal to create a new directory named local-rag-mongodb.

mkdir local-rag-mongodb
cd local-rag-mongodb
2

In the local-rag-mongodb directory, save a file with the .ipynb extension. You will run the remaining code snippets for this tutorial in your notebook. You must create a new code block for each snippet.

3

Run the following command in your notebook:

pip install --quiet pymongo gpt4all sentence_transformers
4

If you're using a local Atlas deployment, run the following code in your notebook, replacing <port-number> with the port for your local deployment.

ATLAS_CONNECTION_STRING = ("mongodb://localhost:<port-number>/?directConnection=true")

If you're using an Atlas cluster, run the following code in your notebook, replacing <connection-string> with your Atlas cluster's SRV connection string:

ATLAS_CONNECTION_STRING = ("<connection-string>")

Note

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

In this section, you load an embedding model locally and generate vector embeddings by using data from the sample_airbnb database, which contains a single collection called listingsAndReviews.

1

This example uses the nomic-embed-text model from Ollama.

Run the following command to pull the embedding model:

ollama pull nomic-embed-text
2
  1. Create a common directory to store code that you'll reuse in multiple steps.

    mkdir common && cd common
  2. Create a file called get-embeddings.go, and paste the following code into it:

    get-embeddings.go
    package common
    import (
    "context"
    "log"
    "github.com/tmc/langchaingo/llms/ollama"
    )
    func GetEmbeddings(documents []string) [][]float32 {
    llm, err := ollama.New(ollama.WithModel("nomic-embed-text"))
    if err != nil {
    log.Fatalf("failed to connect to ollama: %v", err)
    }
    ctx := context.Background()
    embs, err := llm.CreateEmbedding(ctx, documents)
    if err != nil {
    log.Fatalf("failed to create ollama embedding: %v", err)
    }
    return embs
    }
  3. To simplify marshalling and unmarshalling documents in this collection to and from BSON, create a file called models.go and paste the following code into it:

    models.go
    package common
    import (
    "time"
    "go.mongodb.org/mongo-driver/bson/primitive"
    )
    type Image struct {
    ThumbnailURL string `bson:"thumbnail_url"`
    MediumURL string `bson:"medium_url"`
    PictureURL string `bson:"picture_url"`
    XLPictureURL string `bson:"xl_picture_url"`
    }
    type Host struct {
    ID string `bson:"host_id"`
    URL string `bson:"host_url"`
    Name string `bson:"host_name"`
    Location string `bson:"host_location"`
    About string `bson:"host_about"`
    ThumbnailURL string `bson:"host_thumbnail_url"`
    PictureURL string `bson:"host_picture_url"`
    Neighborhood string `bson:"host_neighborhood"`
    IsSuperhost bool `bson:"host_is_superhost"`
    HasProfilePic bool `bson:"host_has_profile_pic"`
    IdentityVerified bool `bson:"host_identity_verified"`
    ListingsCount int32 `bson:"host_listings_count"`
    TotalListingsCount int32 `bson:"host_total_listings_count"`
    Verifications []string `bson:"host_verifications"`
    }
    type Location struct {
    Type string `bson:"type"`
    Coordinates []float64 `bson:"coordinates"`
    IsLocationExact bool `bson:"is_location_exact"`
    }
    type Address struct {
    Street string `bson:"street"`
    Suburb string `bson:"suburb"`
    GovernmentArea string `bson:"government_area"`
    Market string `bson:"market"`
    Country string `bson:"Country"`
    CountryCode string `bson:"country_code"`
    Location Location `bson:"location"`
    }
    type Availability struct {
    Thirty int32 `bson:"availability_30"`
    Sixty int32 `bson:"availability_60"`
    Ninety int32 `bson:"availability_90"`
    ThreeSixtyFive int32 `bson:"availability_365"`
    }
    type ReviewScores struct {
    Accuracy int32 `bson:"review_scores_accuracy"`
    Cleanliness int32 `bson:"review_scores_cleanliness"`
    CheckIn int32 `bson:"review_scores_checkin"`
    Communication int32 `bson:"review_scores_communication"`
    Location int32 `bson:"review_scores_location"`
    Value int32 `bson:"review_scores_value"`
    Rating int32 `bson:"review_scores_rating"`
    }
    type Review struct {
    ID string `bson:"_id"`
    Date time.Time `bson:"date,omitempty"`
    ListingId string `bson:"listing_id"`
    ReviewerId string `bson:"reviewer_id"`
    ReviewerName string `bson:"reviewer_name"`
    Comments string `bson:"comments"`
    }
    type Listing struct {
    ID string `bson:"_id"`
    ListingURL string `bson:"listing_url"`
    Name string `bson:"name"`
    Summary string `bson:"summary"`
    Space string `bson:"space"`
    Description string `bson:"description"`
    NeighborhoodOverview string `bson:"neighborhood_overview"`
    Notes string `bson:"notes"`
    Transit string `bson:"transit"`
    Access string `bson:"access"`
    Interaction string `bson:"interaction"`
    HouseRules string `bson:"house_rules"`
    PropertyType string `bson:"property_type"`
    RoomType string `bson:"room_type"`
    BedType string `bson:"bed_type"`
    MinimumNights string `bson:"minimum_nights"`
    MaximumNights string `bson:"maximum_nights"`
    CancellationPolicy string `bson:"cancellation_policy"`
    LastScraped time.Time `bson:"last_scraped,omitempty"`
    CalendarLastScraped time.Time `bson:"calendar_last_scraped,omitempty"`
    FirstReview time.Time `bson:"first_review,omitempty"`
    LastReview time.Time `bson:"last_review,omitempty"`
    Accommodates int32 `bson:"accommodates"`
    Bedrooms int32 `bson:"bedrooms"`
    Beds int32 `bson:"beds"`
    NumberOfReviews int32 `bson:"number_of_reviews"`
    Bathrooms primitive.Decimal128 `bson:"bathrooms"`
    Amenities []string `bson:"amenities"`
    Price primitive.Decimal128 `bson:"price"`
    WeeklyPrice primitive.Decimal128 `bson:"weekly_price"`
    MonthlyPrice primitive.Decimal128 `bson:"monthly_price"`
    CleaningFee primitive.Decimal128 `bson:"cleaning_fee"`
    ExtraPeople primitive.Decimal128 `bson:"extra_people"`
    GuestsIncluded primitive.Decimal128 `bson:"guests_included"`
    Image Image `bson:"images"`
    Host Host `bson:"host"`
    Address Address `bson:"address"`
    Availability Availability `bson:"availability"`
    ReviewScores ReviewScores `bson:"review_scores"`
    Reviews []Review `bson:"reviews"`
    Embeddings []float32 `bson:"embeddings,omitempty"`
    }
  4. Return to the root directory.

    cd ../
  5. Create another file called generate-embeddings.go and paste the following code into it:

    generate-embeddings.go
    1package main
    2
    3import (
    4 "context"
    5 "local-rag-mongodb/common" // Module that contains the models and GetEmbeddings function
    6 "log"
    7 "os"
    8
    9 "github.com/joho/godotenv"
    10 "go.mongodb.org/mongo-driver/bson"
    11 "go.mongodb.org/mongo-driver/mongo"
    12 "go.mongodb.org/mongo-driver/mongo/options"
    13)
    14
    15func main() {
    16 ctx := context.Background()
    17
    18 if err := godotenv.Load(); err != nil {
    19 log.Println("no .env file found")
    20 }
    21
    22 // Connect to your Atlas cluster
    23 uri := os.Getenv("ATLAS_CONNECTION_STRING")
    24 if uri == "" {
    25 log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    26 }
    27 clientOptions := options.Client().ApplyURI(uri)
    28 client, err := mongo.Connect(ctx, clientOptions)
    29 if err != nil {
    30 log.Fatalf("failed to connect to the server: %v", err)
    31 }
    32 defer func() { _ = client.Disconnect(ctx) }()
    33
    34 // Set the namespace
    35 coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
    36
    37 filter := bson.D{
    38 {"$and",
    39 bson.A{
    40 bson.D{
    41 {"$and",
    42 bson.A{
    43 bson.D{{"summary", bson.D{{"$exists", true}}}},
    44 bson.D{{"summary", bson.D{{"$ne", ""}}}},
    45 },
    46 }},
    47 bson.D{{"embeddings", bson.D{{"$exists", false}}}},
    48 }},
    49 }
    50
    51 findOptions := options.Find().SetLimit(250)
    52
    53 cursor, err := coll.Find(ctx, filter, findOptions)
    54 if err != nil {
    55 log.Fatalf("failed to retrieve data from the server: %v", err)
    56 }
    57
    58 var listings []common.Listing
    59 if err = cursor.All(ctx, &listings); err != nil {
    60 log.Fatalf("failed to unmarshal retrieved docs to model objects: %v", err)
    61 }
    62
    63 var summaries []string
    64 for _, listing := range listings {
    65 summaries = append(summaries, listing.Summary)
    66 }
    67
    68 log.Println("Generating embeddings.")
    69 embeddings := common.GetEmbeddings(summaries)
    70
    71 updateDocuments := make([]mongo.WriteModel, len(listings))
    72 for i := range updateDocuments {
    73 updateDocuments[i] = mongo.NewUpdateOneModel().
    74 SetFilter(bson.D{{"_id", listings[i].ID}}).
    75 SetUpdate(bson.D{{"$set", bson.D{{"embeddings", embeddings[i]}}}})
    76 }
    77
    78 bulkWriteOptions := options.BulkWrite().SetOrdered(false)
    79
    80 result, err := coll.BulkWrite(ctx, updateDocuments, bulkWriteOptions)
    81 if err != nil {
    82 log.Fatalf("failed to update documents: %v", err)
    83 }
    84
    85 log.Printf("%d documents updated successfully.", result.MatchedCount)
    86}

    In this example, we set a limit of 250 documents when generating embeddings. The process to generate embeddings for the more than 5000 documents in the collection is slow. If you want to change the number of documents you're generating embeddings for:

    • Change the number of documents: Adjust the .SetLimit(250) number in the Find() options in line 52.

    • Generate embeddings for all documents: Omit the options in the Find() call in line 54.

  6. Run the following command to execute the code:

    go run generate-embeddings.go
    2024/10/10 15:49:23 Generating embeddings.
    2024/10/10 15:49:28 250 documents updated successfully.
1

Run the following command to pull the nomic-embed-text model from Ollama:

ollama pull nomic-embed-text
2

Create a file called OllamaModels.java and paste the following code.

This code defines the local Ollama embedding and chat models that you'll use in your project. We'll work with the chat model in a later step. You can adapt or create additional models as needed for your preferred setup.

This code also defines two methods to generate embeddings for a given input using the embedding model that you downloaded previously:

  • Multiple Inputs: The getEmbeddings method accepts an array of text inputs (List<String>), allowing you to create multiple embeddings in a single API call. The method converts the API-provided arrays of floats to BSON arrays of doubles for storing in your Atlas cluster.

  • Single Input: The getEmbedding method accepts a single String, which represents a query you want to make against your vector data. The method converts the API-provided array of floats to a BSON array of doubles to use when querying your collection.

OllamaModels.java
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.ollama.OllamaChatModel;
import dev.langchain4j.model.ollama.OllamaEmbeddingModel;
import dev.langchain4j.model.output.Response;
import org.bson.BsonArray;
import org.bson.BsonDouble;
import java.util.List;
import static java.time.Duration.ofSeconds;
public class OllamaModels {
private static final String host = "http://localhost:11434";
private static OllamaEmbeddingModel embeddingModel;
private static OllamaChatModel chatModel;
/**
* Returns the Ollama embedding model used by the getEmbeddings() and getEmbedding() methods
* to generate vector embeddings.
*/
public static OllamaEmbeddingModel getEmbeddingModel() {
if (embeddingModel == null) {
embeddingModel = OllamaEmbeddingModel.builder()
.timeout(ofSeconds(10))
.modelName("nomic-embed-text")
.baseUrl(host)
.build();
}
return embeddingModel;
}
/**
* Returns the Ollama chat model interface used by the createPrompt() method
* to process queries and generate responses.
*/
public static OllamaChatModel getChatModel() {
if (chatModel == null) {
chatModel = OllamaChatModel.builder()
.timeout(ofSeconds(25))
.modelName("mistral")
.baseUrl(host)
.build();
}
return chatModel;
}
/**
* Takes an array of strings and returns a collection of BSON array embeddings
* to store in the database.
*/
public static List<BsonArray> getEmbeddings(List<String> texts) {
List<TextSegment> textSegments = texts.stream()
.map(TextSegment::from)
.toList();
Response<List<Embedding>> response = getEmbeddingModel().embedAll(textSegments);
return response.content().stream()
.map(e -> new BsonArray(
e.vectorAsList().stream()
.map(BsonDouble::new)
.toList()))
.toList();
}
/**
* Takes a single string and returns a BSON array embedding to
* use in a vector query.
*/
public static BsonArray getEmbedding(String text) {
Response<Embedding> response = getEmbeddingModel().embed(text);
return new BsonArray(
response.content().vectorAsList().stream()
.map(BsonDouble::new)
.toList());
}
}
3

Create a file named EmbeddingGenerator.java and paste the following code.

This code uses the getEmbeddings method and the MongoDB Java Sync Driver to do the following:

  1. Connect to your local Atlas deployment or Atlas cluster.

  2. Get a subset of documents from the sample_airbnb.listingsAndReviews collection that have a non-empty summary field.

    Note

    For demonstration purposes, we set a limit of 250 documents to reduce the processing time. You can adjust or remove this limit as needed to better suit your use case.

  3. Generate an embedding from each document's summary field using the getEmbeddings method that you defined previously.

  4. Update each document with a new embedding field that contains the corresponding embedding value.

EmbeddingGenerator.java
import com.mongodb.MongoException;
import com.mongodb.bulk.BulkWriteResult;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoCursor;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.model.BulkWriteOptions;
import com.mongodb.client.model.Filters;
import com.mongodb.client.model.Projections;
import com.mongodb.client.model.UpdateOneModel;
import com.mongodb.client.model.Updates;
import com.mongodb.client.model.WriteModel;
import org.bson.BsonArray;
import org.bson.Document;
import org.bson.conversions.Bson;
import java.util.ArrayList;
import java.util.List;
public class EmbeddingGenerator {
public static void main(String[] args) {
String uri = System.getenv("ATLAS_CONNECTION_STRING");
if (uri == null || uri.isEmpty()) {
throw new RuntimeException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
}
// establish connection and set namespace
try (MongoClient mongoClient = MongoClients.create(uri)) {
MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
// define parameters for the find() operation
// NOTE: this example uses a limit to reduce processing time
Bson projectionFields = Projections.fields(
Projections.include("_id", "summary"));
Bson filterSummary = Filters.ne("summary", "");
int limit = 250;
try (MongoCursor<Document> cursor = collection
.find(filterSummary)
.projection(projectionFields)
.limit(limit)
.iterator()) {
List<String> summaries = new ArrayList<>();
List<String> documentIds = new ArrayList<>();
while (cursor.hasNext()) {
Document document = cursor.next();
String summary = document.getString("summary");
String id = document.get("_id").toString();
summaries.add(summary);
documentIds.add(id);
}
// generate embeddings for the summary in each document
// and add to the document to the 'embeddings' array field
System.out.println("Generating embeddings for " + summaries.size() + " documents.");
System.out.println("This operation may take up to several minutes.");
List<BsonArray> embeddings = OllamaModels.getEmbeddings(summaries);
List<WriteModel<Document>> updateDocuments = new ArrayList<>();
for (int j = 0; j < summaries.size(); j++) {
UpdateOneModel<Document> updateDoc = new UpdateOneModel<>(
Filters.eq("_id", documentIds.get(j)),
Updates.set("embeddings", embeddings.get(j)));
updateDocuments.add(updateDoc);
}
// bulk write the updated documents to the 'listingsAndReviews' collection
int result = performBulkWrite(updateDocuments, collection);
System.out.println("Added embeddings successfully to " + result + " documents.");
}
} catch (MongoException me) {
throw new RuntimeException("Failed to connect to MongoDB", me);
} catch (Exception e) {
throw new RuntimeException("Operation failed: ", e);
}
}
/**
* Performs a bulk write operation on the specified collection.
*/
private static int performBulkWrite(List<WriteModel<Document>> updateDocuments, MongoCollection<Document> collection) {
if (updateDocuments.isEmpty()) {
return 0;
}
BulkWriteResult result;
try {
BulkWriteOptions options = new BulkWriteOptions().ordered(false);
result = collection.bulkWrite(updateDocuments, options);
return result.getModifiedCount();
} catch (MongoException me) {
throw new RuntimeException("Failed to insert documents", me);
}
}
}
4

Save and run the file. The output resembles:

Generating embeddings for 250 documents.
This operation may take up to several minutes.
Added embeddings successfully to 250 documents.
1

This example uses the mixedbread-ai/mxbai-embed-large-v1 model from the Hugging Face model hub. The simplest method to download the model files is to clone the repository using Git with Git Large File Storage. Hugging Face requires a user access token or Git over SSH to authenticate your request to clone the repository.

git clone https://<your-hugging-face-username>:<your-hugging-face-user-access-token>@huggingface.co/mixedbread-ai/mxbai-embed-large-v1
git clone git@hf.co:mixedbread-ai/mxbai-embed-large-v1

Tip

Git Large File Storage

The Hugging Face model files are large, and require Git Large File Storage (git-lfs) to clone the repositories. If you see errors related to large file storage, ensure you have installed git-lfs.

2

Get the path to the local model files on your machine. This is the parent directory that contains the git repository you just cloned. If you cloned the model repository inside the project directory you created for this tutorial, the parent directory path should resemble:

/Users/<username>/local-rag-mongodb

Check the model directory and make sure it contains an onnx directory that has a model_quantized.onnx file:

cd mxbai-embed-large-v1/onnx
ls
model.onnx model_fp16.onnx model_quantized.onnx
3
  1. Navigate back to the local-rag-mongodb parent directory.

  2. Create a file called get-embeddings.js, and paste the following code into it:

    get-embeddings.js
    import { env, pipeline } from '@xenova/transformers';
    // Function to generate embeddings for given data
    export async function getEmbeddings(data) {
    // Replace this path with the parent directory that contains the model files
    env.localModelPath = '/Users/<username>/local-rag-mongodb/';
    env.allowRemoteModels = false;
    const task = 'feature-extraction';
    const model = 'mxbai-embed-large-v1';
    const embedder = await pipeline(
    task, model);
    const results = await embedder(data, { pooling: 'mean', normalize: true });
    return Array.from(results.data);
    }

    Replace the '/Users/<username>/local-rag-mongodb/' with the local path from the prior step.

  3. Create another file called generate-embeddings.js and paste the following code into it:

    generate-embeddings.js
    1import { MongoClient } from 'mongodb';
    2import { getEmbeddings } from './get-embeddings.js';
    3
    4async function run() {
    5 const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
    6
    7 try {
    8 // Connect to your local MongoDB deployment
    9 await client.connect();
    10 const db = client.db("sample_airbnb");
    11 const collection = db.collection("listingsAndReviews");
    12
    13 const filter = { '$and': [
    14 { 'summary': { '$exists': true, '$ne': null } },
    15 { 'embeddings': { '$exists': false } }
    16 ]};
    17
    18 // This is a long-running operation for all docs in the collection,
    19 // so we limit the docs for this example
    20 const cursor = collection.find(filter).limit(50);
    21
    22 // To verify that you have the local embedding model configured properly,
    23 // try generating an embedding for one document
    24 const firstDoc = await cursor.next();
    25 if (!firstDoc) {
    26 console.log('No document found.');
    27 return;
    28 }
    29
    30 const firstDocEmbeddings = await getEmbeddings(firstDoc.summary);
    31 console.log(firstDocEmbeddings);
    32
    33 // After confirming you are successfully generating embeddings,
    34 // uncomment the following code to generate embeddings for all docs.
    35 /* cursor.rewind(); // Reset the cursor to process documents again
    36 * console.log("Generating embeddings for documents. Standby.");
    37 * let updatedDocCount = 0;
    38 *
    39 * for await (const doc of cursor) {
    40 * const text = doc.summary;
    41 * const embeddings = await getEmbeddings(text);
    42 * await collection.updateOne({ "_id": doc._id },
    43 * {
    44 * "$set": {
    45 * "embeddings": embeddings
    46 * }
    47 * }
    48 * );
    49 * updatedDocCount += 1;
    50 * }
    51 * console.log("Count of documents updated: " + updatedDocCount);
    52 */
    53 } catch (err) {
    54 console.log(err.stack);
    55 }
    56 finally {
    57 await client.close();
    58 }
    59}
    60run().catch(console.dir);

    This code includes a few lines to test that you have correctly downloaded the model and are using the correct path. Run the following command to execute the code:

    node --env-file=.env generate-embeddings.js
    Tensor {
    dims: [ 1, 1024 ],
    type: 'float32',
    data: Float32Array(1024) [
    -0.01897735893726349, -0.001120976754464209, -0.021224822849035263,
    -0.023649735376238823, -0.03350808471441269, -0.0014186901971697807,
    -0.009617107920348644, 0.03344292938709259, 0.05424851179122925,
    -0.025904450565576553, 0.029770011082291603, -0.0006215018220245838,
    0.011056603863835335, -0.018984895199537277, 0.03985185548663139,
    -0.015273082070052624, -0.03193040192127228, 0.018376577645540237,
    -0.02236943319439888, 0.01433168537914753, 0.02085157483816147,
    -0.005689046811312437, -0.05541415512561798, -0.055907104164361954,
    -0.019112611189484596, 0.02196515165269375, 0.027313007041811943,
    -0.008618313819169998, 0.045496534556150436, 0.06271681934595108,
    -0.0028660669922828674, -0.02433634363114834, 0.02016191929578781,
    -0.013882477767765522, -0.025465600192546844, 0.0000950733374338597,
    0.018200192600488663, -0.010413561016321182, -0.002004098379984498,
    -0.058351870626211166, 0.01749623566865921, -0.013926318846642971,
    -0.00278360559605062, -0.010333008132874966, 0.004406726453453302,
    0.04118744656443596, 0.02210155501961708, -0.016340743750333786,
    0.004163357429206371, -0.018561601638793945, 0.0021984230261296034,
    -0.012378614395856857, 0.026662321761250496, -0.006476820446550846,
    0.001278138137422502, -0.010084952227771282, -0.055993322283029556,
    -0.015850437805056572, 0.015145729295909405, 0.07512971013784409,
    -0.004111358895897865, -0.028162647038698196, 0.023396577686071396,
    -0.01159974467009306, 0.021751703694462776, 0.006198467221111059,
    0.014084039255976677, -0.0003913900291081518, 0.006310020107775927,
    -0.04500332102179527, 0.017774192616343498, -0.018170733004808426,
    0.026185045018792152, -0.04488714039325714, -0.048510149121284485,
    0.015152698382735252, 0.012136898003518581, 0.0405895821750164,
    -0.024783289059996605, -0.05514788627624512, 0.03484730422496796,
    -0.013530988246202469, 0.0319477915763855, 0.04537525027990341,
    -0.04497901350259781, 0.009621822275221348, -0.013845544308423996,
    0.0046155862510204315, 0.03047163411974907, 0.0058857654221355915,
    0.005858785007148981, 0.01180865429341793, 0.02734190598130226,
    0.012322399765253067, 0.03992653638124466, 0.015777742490172386,
    0.017797520384192467, 0.02265017107129097, -0.018233606591820717,
    0.02064627595245838,
    ... 924 more items
    ],
    size: 1024
    }
  4. Optionally, after you have confirmed you are successfully generating embeddings with the local model, you can uncomment the code in lines 35-52 to generate embeddings for all the documents in the collection. Save the file.

    Then, run the command to execute the code:

    node --env-file=.env generate-embeddings.js
    [
    Tensor {
    dims: [ 1024 ],
    type: 'float32',
    data: Float32Array(1024) [
    -0.043243519961833954, 0.01316747535020113, -0.011639945209026337,
    -0.025046885013580322, 0.005129443947225809, -0.02003324404358864,
    0.005245734006166458, 0.10105721652507782, 0.05425914749503136,
    -0.010824322700500488, 0.021903572604060173, 0.048009492456912994,
    0.01291663944721222, -0.015903260558843613, -0.008034848608076572,
    -0.003592714900150895, -0.029337648302316666, 0.02282896265387535,
    -0.029112281277775764, 0.011099508963525295, -0.012238143011927605,
    -0.008351574651896954, -0.048714976757764816, 0.001015961286611855,
    0.02252192236483097, 0.04426417499780655, 0.03514830768108368,
    -0.02088250033557415, 0.06391220539808273, 0.06896235048770905,
    -0.015386332757771015, -0.019206153228878975, 0.015263230539858341,
    -0.00019019744649995118, -0.032121095806360245, 0.015855342149734497,
    0.05055809020996094, 0.004083932377398014, 0.026945054531097412,
    -0.0505746565759182, -0.009507855400443077, -0.012497996911406517,
    0.06249537691473961, -0.04026378318667412, 0.010749109089374542,
    0.016748877242207527, -0.0235306303948164, -0.03941794112324715,
    0.027474915608763695, -0.02181144617497921, 0.0026422827504575253,
    0.005104491952806711, 0.027314607053995132, 0.019283341243863106,
    0.005245842970907688, -0.018712762743234634, -0.08618085831403732,
    0.003314188914373517, 0.008071620017290115, 0.05356570705771446,
    -0.008000597357749939, 0.006983411032706499, -0.0070550404489040375,
    -0.043323490768671036, 0.03490140289068222, 0.03810165822505951,
    0.0406375490128994, -0.0032191979698836803, 0.01489361934363842,
    -0.01609957590699196, -0.006372962612658739, 0.03360277786850929,
    -0.014810526743531227, -0.00925799086689949, -0.01885424554347992,
    0.0182492695748806, 0.009002899751067162, -0.004713123198598623,
    -0.00846288911998272, -0.012471121735870838, -0.0080558517947793,
    0.0135461101308465, 0.03335557505488396, -0.0027410900220274925,
    -0.02145615592598915, 0.01378028653562069, 0.03708091005682945,
    0.03519297018647194, 0.014239554293453693, 0.02219904027879238,
    0.0015641176141798496, 0.02624501660466194, 0.022713981568813324,
    -0.004414170514792204, 0.026919621974229813, -0.002607459668070078,
    -0.04017219692468643, -0.003570320550352335, -0.022905709221959114,
    0.030657364055514336,
    ... 924 more items
    ],
    size: 1024
    }
    ]
    Generating embeddings for documents. Standby.
    Count of documents updated: 50
1

This code performs the following actions:

  • Connects to your local Atlas deployment or Atlas cluster and selects the sample_airbnb.listingsAndReviews collection.

  • Loads the mixedbread-ai/mxbai-embed-large-v1 model from the Hugging Face model hub and saves it locally. To learn more, see Downloading models.

  • Defines a function that uses the model to generate vector embeddings.

  • For a subset of documents in the collection:

    • Generates an embedding from the document's summary field.

    • Updates the document by creating a new field called embeddings that contains the embedding.

    from pymongo import MongoClient
    from sentence_transformers import SentenceTransformer
    # Connect to your local Atlas deployment or Atlas Cluster
    client = MongoClient(ATLAS_CONNECTION_STRING)
    # Select the sample_airbnb.listingsAndReviews collection
    collection = client["sample_airbnb"]["listingsAndReviews"]
    # Load the embedding model (https://huggingface.co/sentence-transformers/mixedbread-ai/mxbai-embed-large-v1)
    model_path = "<model-path>"
    model = SentenceTransformer('mixedbread-ai/mxbai-embed-large-v1')
    model.save(model_path)
    model = SentenceTransformer(model_path)
    # Define function to generate embeddings
    def get_embedding(text):
    return model.encode(text).tolist()
    # Filters for only documents with a summary field and without an embeddings field
    filter = { '$and': [ { 'summary': { '$exists': True, '$ne': None } }, { 'embeddings': { '$exists': False } } ] }
    # Creates embeddings for subset of the collection
    updated_doc_count = 0
    for document in collection.find(filter).limit(50):
    text = document['summary']
    embedding = get_embedding(text)
    collection.update_one({ '_id': document['_id'] }, { "$set": { 'embeddings': embedding } }, upsert=True)
    updated_doc_count += 1
    print("Documents updated: {}".format(updated_doc_count))
    Documents updated: 50
2

This path should resemble: /Users/<username>/local-rag-mongodb

3

This code might take several minutes to run. After it's finished, you can view your vector embeddings by connecting to your local deployment from mongosh or your application using your deployment's connection string. Then you can run read operations on the sample_airbnb.listingsAndReviews collection.

You can view your vector embeddings in the Atlas UI by navigating to the sample_airbnb.listingsAndReviews collection in your cluster and expanding the fields in a document.

Tip

You can convert the embeddings in the sample data to BSON vectors for efficient storage and ingestion of vectors in Atlas. To learn more, see how to convert native embeddings to BSON vectors.

To enable vector search on the sample_airbnb.listingsAndReviews collection, create an Atlas Vector Search index.

This tutorial walks you through how to create an Atlas Vector Search index programmatically with a supported MongoDB Driver or using the Atlas CLI. For information on other ways to create an Atlas Vector Search index, see How to Index Fields for Vector Search.

Note

To create an Atlas Vector Search index, you must have Project Data Access Admin or higher access to the Atlas project.

To create an Atlas Vector Search index for a collection using the MongoDB Go driver v1.16.0 or later, perform the following steps:

1

Create a file named vector-index.go and paste the following code in the file:

vector-index.go
package main
import (
"context"
"fmt"
"log"
"os"
"time"
"github.com/joho/godotenv"
"go.mongodb.org/mongo-driver/bson"
"go.mongodb.org/mongo-driver/mongo"
"go.mongodb.org/mongo-driver/mongo/options"
)
func main() {
ctx := context.Background()
if err := godotenv.Load(); err != nil {
log.Println("no .env file found")
}
// Connect to your Atlas cluster
uri := os.Getenv("ATLAS_CONNECTION_STRING")
if uri == "" {
log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
}
clientOptions := options.Client().ApplyURI(uri)
client, err := mongo.Connect(ctx, clientOptions)
if err != nil {
log.Fatalf("failed to connect to the server: %v", err)
}
defer func() { _ = client.Disconnect(ctx) }()
// Set the namespace
coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
indexName := "vector_index"
opts := options.SearchIndexes().SetName(indexName).SetType("vectorSearch")
type vectorDefinitionField struct {
Type string `bson:"type"`
Path string `bson:"path"`
NumDimensions int `bson:"numDimensions"`
Similarity string `bson:"similarity"`
}
type vectorDefinition struct {
Fields []vectorDefinitionField `bson:"fields"`
}
indexModel := mongo.SearchIndexModel{
Definition: vectorDefinition{
Fields: []vectorDefinitionField{{
Type: "vector",
Path: "embeddings",
NumDimensions: 768,
Similarity: "cosine"}},
},
Options: opts,
}
log.Println("Creating the index.")
searchIndexName, err := coll.SearchIndexes().CreateOne(ctx, indexModel)
if err != nil {
log.Fatalf("failed to create the search index: %v", err)
}
// Await the creation of the index.
log.Println("Polling to confirm successful index creation.")
log.Println("NOTE: This may take up to a minute.")
searchIndexes := coll.SearchIndexes()
var doc bson.Raw
for doc == nil {
cursor, err := searchIndexes.List(ctx, options.SearchIndexes().SetName(searchIndexName))
if err != nil {
fmt.Errorf("failed to list search indexes: %w", err)
}
if !cursor.Next(ctx) {
break
}
name := cursor.Current.Lookup("name").StringValue()
queryable := cursor.Current.Lookup("queryable").Boolean()
if name == searchIndexName && queryable {
doc = cursor.Current
} else {
time.Sleep(5 * time.Second)
}
}
log.Println("Name of Index Created: " + searchIndexName)
}

This index definition specifies indexing the embeddings field in an index of the vectorSearch type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model. The index definition specifies 768 vector dimensions and measures similarity using cosine.

2

Save the file, and then run the following command in your terminal to execute the code:

go run vector-index.go

To create an Atlas Vector Search index for a collection using the MongoDB Java driver v5.2.0 or later, perform the following steps:

1

Create a file named VectorIndex.java and paste the following code.

This code calls a createSearchIndexes() helper method, which takes your MongoCollection object and creates an Atlas Vector Search index on your collection using the following index definition:

  • Index the embedding field in a vectorSearch index type for the sample_airbnb.listingsAndReviews collection. This field contains the embedding created using the embedding model.

  • Enforce 768 vector dimensions and measure similarity between vectors using cosine.

VectorIndex.java
import com.mongodb.MongoException;
import com.mongodb.client.ListSearchIndexesIterable;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoCursor;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.model.SearchIndexModel;
import com.mongodb.client.model.SearchIndexType;
import org.bson.Document;
import org.bson.conversions.Bson;
import java.util.Collections;
import java.util.List;
public class VectorIndex {
public static void main(String[] args) {
String uri = System.getenv("ATLAS_CONNECTION_STRING");
if (uri == null || uri.isEmpty()) {
throw new IllegalStateException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
}
// establish connection and set namespace
try (MongoClient mongoClient = MongoClients.create(uri)) {
MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
// define the index details for the index model
String indexName = "vector_index";
Bson definition = new Document(
"fields",
Collections.singletonList(
new Document("type", "vector")
.append("path", "embeddings")
.append("numDimensions", 768)
.append("similarity", "cosine")));
SearchIndexModel indexModel = new SearchIndexModel(
indexName,
definition,
SearchIndexType.vectorSearch());
// create the index using the defined model
try {
List<String> result = collection.createSearchIndexes(Collections.singletonList(indexModel));
System.out.println("Successfully created a vector index named: " + result);
} catch (Exception e) {
throw new RuntimeException(e);
}
// wait for Atlas to build the index and make it queryable
System.out.println("Polling to confirm the index has completed building.");
System.out.println("It may take up to a minute for the index to build before you can query using it.");
waitForIndexReady(collection, indexName);
} catch (MongoException me) {
throw new RuntimeException("Failed to connect to MongoDB ", me);
} catch (Exception e) {
throw new RuntimeException("Operation failed: ", e);
}
}
/**
* Polls the collection to check whether the specified index is ready to query.
*/
public static void waitForIndexReady(MongoCollection<Document> collection, String indexName) throws InterruptedException {
ListSearchIndexesIterable<Document> searchIndexes = collection.listSearchIndexes();
while (true) {
try (MongoCursor<Document> cursor = searchIndexes.iterator()) {
if (!cursor.hasNext()) {
break;
}
Document current = cursor.next();
String name = current.getString("name");
boolean queryable = current.getBoolean("queryable");
if (name.equals(indexName) && queryable) {
System.out.println(indexName + " index is ready to query");
return;
} else {
Thread.sleep(500);
}
}
}
}
}
2

Save and run the file. The output resembles:

Successfully created a vector index named: [vector_index]
Polling to confirm the index has completed building.
It may take up to a minute for the index to build before you can query using it.
vector_index index is ready to query

To create an Atlas Vector Search index for a collection using the MongoDB Node driver v6.6.0 or later, perform the following steps:

1

Create a file named vector-index.js and paste the following code in the file:

vector-index.js
import { MongoClient } from 'mongodb';
// Connect to your Atlas deployment
const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
async function run() {
try {
const database = client.db("sample_airbnb");
const collection = database.collection("listingsAndReviews");
// Define your Atlas Vector Search index
const index = {
name: "vector_index",
type: "vectorSearch",
definition: {
"fields": [
{
"type": "vector",
"numDimensions": 1024,
"path": "embeddings",
"similarity": "cosine"
}
]
}
}
// Call the method to create the index
const result = await collection.createSearchIndex(index);
console.log(result);
} finally {
await client.close();
}
}
run().catch(console.dir);

This index definition specifies indexing the embeddings field in an index of the vectorSearch type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model. The index definition specifies 1024 vector dimensions and measures similarity using cosine.

2
  1. Save the file, and then run the following command in your terminal to execute the code:

    node --env-file=.env vector-index.js

To create an Atlas Vector Search index for a collection using the PyMongo driver v4.7 or later, perform the following steps:

You can create the index directly from your application with the PyMongo driver. Paste and run the following code in your notebook:

from pymongo.operations import SearchIndexModel
# Create your index model, then create the search index
search_index_model = SearchIndexModel(
definition = {
"fields": [
{
"type": "vector",
"numDimensions": 1024,
"path": "embeddings",
"similarity": "cosine"
}
]
},
name = "vector_index",
type = "vectorSearch"
)
collection.create_search_index(model=search_index_model)

This index definition specifies indexing the embeddings field in an index of the vectorSearch type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model. The index definition specifies 1024 vector dimensions and measures similarity using cosine.

To create an Atlas Vector Search index using the Atlas CLI, perform the following steps:

1

Create a file named vector-index.json and paste the following index definition in the file:

vector-index.json
{
"database": "sample_airbnb",
"collectionName": "listingsAndReviews",
"type": "vectorSearch",
"name": "vector_index",
"fields": [
{
"type": "vector",
"path": "embeddings",
"numDimensions": 768,
"similarity": "cosine"
}
]
}

This index definition specifies the following:

  • Index the embeddings field in a vectorSearch index type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model.

  • Enforce 768 vector dimensions and measure similarity between vectors using cosine.

2

Save the file in your project directory, and then run the following command in your terminal, replacing <path-to-file> with the path to the vector-index.json file that you created.

atlas deployments search indexes create --file <path-to-file>

For example, your path might resemble: /Users/<username>/local-rag-mongodb/vector-index.json.

1

Create a file named vector-index.json and paste the following index definition in the file:

vector-index.json
{
"database": "sample_airbnb",
"collectionName": "listingsAndReviews",
"type": "vectorSearch",
"name": "vector_index",
"fields": [
{
"type": "vector",
"path": "embeddings",
"numDimensions": 768,
"similarity": "cosine"
}
]
}

This index definition specifies the following:

  • Index the embeddings field in a vectorSearch index type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model.

  • Enforce 768 vector dimensions and measure similarity between vectors using cosine.

2

Save the file in your project directory, and then run the following command in your terminal, replacing <path-to-file> with the path to the vector-index.json file that you created.

atlas deployments search indexes create --file <path-to-file>

For example, your path might resemble: /Users/<username>/local-rag-mongodb/vector-index.json.

1

Create a file named vector-index.json and paste the following index definition in the file.

This index definition specifies indexing the embeddings field in an index of the vectorSearch type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model. The index definition specifies 1024 vector dimensions and measures similarity using cosine.

{
"database": "sample_airbnb",
"collectionName": "listingsAndReviews",
"type": "vectorSearch",
"name": "vector_index",
"fields": [
{
"type": "vector",
"path": "embeddings",
"numDimensions": 1024,
"similarity": "cosine"
}
]
}
2

Save the file in your project directory, and then run the following command in your terminal, replacing <path-to-file> with the path to the vector-index.json file that you created.

atlas deployments search indexes create --file <path-to-file>

This path should resemble: /Users/<username>/local-rag-mongodb/vector-index.json.

1

Create a file named vector-index.json and paste the following index definition in the file.

This index definition specifies indexing the embeddings field in an index of the vectorSearch type for the sample_airbnb.listingsAndReviews collection. This field contains the embeddings created using the embedding model. The index definition specifies 1024 vector dimensions and measures similarity using cosine.

{
"database": "sample_airbnb",
"collectionName": "listingsAndReviews",
"type": "vectorSearch",
"name": "vector_index",
"fields": [
{
"type": "vector",
"path": "embeddings",
"numDimensions": 1024,
"similarity": "cosine"
}
]
}
2

Save the file in your project directory, and then run the following command in your terminal, replacing <path-to-file> with the path to the vector-index.json file that you created.

atlas deployments search indexes create --file <path-to-file>

This path should resemble: /Users/<username>/local-rag-mongodb/vector-index.json.

This section demonstrates a sample RAG implementation that you can run locally using Atlas Vector Search and Ollama.

1
  1. Navigate to the common directory.

    cd common
  2. Create a file called retrieve-documents.go and paste the following code into it:

    retrieve-documents.go
    package common
    import (
    "context"
    "log"
    "os"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    type Document struct {
    Summary string `bson:"summary"`
    ListingURL string `bson:"listing_url"`
    Score float64 `bson:"score"`
    }
    func RetrieveDocuments(query string) []Document {
    ctx := context.Background()
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
    var array []string
    array = append(array, query)
    queryEmbedding := GetEmbeddings(array)
    vectorSearchStage := bson.D{
    {"$vectorSearch", bson.D{
    {"index", "vector_index"},
    {"path", "embeddings"},
    {"queryVector", queryEmbedding[0]},
    {"exact", true},
    {"limit", 5},
    }}}
    projectStage := bson.D{
    {"$project", bson.D{
    {"_id", 0},
    {"summary", 1},
    {"listing_url", 1},
    {"score", bson.D{{"$meta", "vectorSearchScore"}}},
    }}}
    cursor, err := coll.Aggregate(ctx, mongo.Pipeline{vectorSearchStage, projectStage})
    if err != nil {
    log.Fatalf("failed to retrieve data from the server: %v", err)
    }
    var results []Document
    if err = cursor.All(ctx, &results); err != nil {
    log.Fatalf("failed to unmarshal retrieved docs to model objects: %v", err)
    }
    return results
    }

    This code performs a vector query on your local Atlas deployment or your Atlas cluster.

  3. Run a test query to confirm you're getting the expected results. Move back to the project root directory.

    cd ../
  4. Create a new file called test-query.go, and paste the following code into it:

    test-query.go
    package main
    import (
    "fmt"
    "local-rag-mongodb/common" // Module that contains the RetrieveDocuments function
    "log"
    "strings"
    )
    func main() {
    query := "beach house"
    matchingDocuments := common.RetrieveDocuments(query)
    if matchingDocuments == nil {
    log.Fatal("No documents matched the query.\n")
    }
    var textDocuments strings.Builder
    for _, doc := range matchingDocuments {
    // Print the contents of the matching documents for verification
    fmt.Printf("Summary: %v\n", doc.Summary)
    fmt.Printf("Listing URL: %v\n", doc.ListingURL)
    fmt.Printf("Score: %v\n", doc.Score)
    // Build a single text string to use as the context for the QA
    textDocuments.WriteString("Summary: ")
    textDocuments.WriteString(doc.Summary)
    textDocuments.WriteString("\n")
    textDocuments.WriteString("Listing URL: ")
    textDocuments.WriteString(doc.ListingURL)
    textDocuments.WriteString("\n")
    }
    fmt.Printf("\nThe constructed context for the QA follows:\n\n")
    fmt.Printf(textDocuments.String())
    }
  5. Run the following code to execute the query:

    go run test-query.go
    Summary: "Lani Beach House" Aloha - Please do not reserve until reading about the State Tax in "Other Things to Note" section. Please do not reserve unless you agree to pay taxes to Hawaii Beach Homes directly. If you have questions, please inquire before booking. The home has been completely redecorated in a luxurious island style: vaulted ceilings, skylights, granite counter tops, stainless steel appliances and a gourmet kitchen are just some of the the features. All bedrooms have ocean views
    Listing URL: https://www.airbnb.com/rooms/11553333
    Score: 0.85715651512146
    Summary: This peaceful house in North Bondi is 300m to the beach and a minute's walk to cafes and bars. With 3 bedrooms, (can sleep up to 8) it is perfect for families, friends and pets. The kitchen was recently renovated and a new lounge and chairs installed. The house has a peaceful, airy, laidback vibe - a perfect beach retreat. Longer-term bookings encouraged. Parking for one car. A parking permit for a second car can also be obtained on request.
    Listing URL: https://www.airbnb.com/rooms/10423504
    Score: 0.8425835371017456
    Summary: There are 2 bedrooms and a living room in the house. 1 Bathroom. 1 Kitchen. Friendly neighbourhood. Close to sea side and Historical places.
    Listing URL: https://www.airbnb.com/rooms/10488837
    Score: 0.8403302431106567
    Summary: Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! This spacious 4 Bedroom and 4 Bath house has all you need for your family or group. Perfect for Family Vacations and executive retreats. We are in a gated beachfront estate, with lots of space for your activities.
    Listing URL: https://www.airbnb.com/rooms/10317142
    Score: 0.8367050886154175
    Summary: This is a gorgeous home just off the main rd, with lots of sun and new amenities. room has own entrance with small deck, close proximity to the beach , bus to the junction , around the corner form all the cafes, bars and restaurants (2 mins).
    Listing URL: https://www.airbnb.com/rooms/11719579
    Score: 0.8262639045715332
    The constructed context for the QA follows:
    Summary: "Lani Beach House" Aloha - Please do not reserve until reading about the State Tax in "Other Things to Note" section. Please do not reserve unless you agree to pay taxes to Hawaii Beach Homes directly. If you have questions, please inquire before booking. The home has been completely redecorated in a luxurious island style: vaulted ceilings, skylights, granite counter tops, stainless steel appliances and a gourmet kitchen are just some of the the features. All bedrooms have ocean views
    Listing URL: https://www.airbnb.com/rooms/11553333
    Summary: This peaceful house in North Bondi is 300m to the beach and a minute's walk to cafes and bars. With 3 bedrooms, (can sleep up to 8) it is perfect for families, friends and pets. The kitchen was recently renovated and a new lounge and chairs installed. The house has a peaceful, airy, laidback vibe - a perfect beach retreat. Longer-term bookings encouraged. Parking for one car. A parking permit for a second car can also be obtained on request.
    Listing URL: https://www.airbnb.com/rooms/10423504
    Summary: There are 2 bedrooms and a living room in the house. 1 Bathroom. 1 Kitchen. Friendly neighbourhood. Close to sea side and Historical places.
    Listing URL: https://www.airbnb.com/rooms/10488837
    Summary: Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! This spacious 4 Bedroom and 4 Bath house has all you need for your family or group. Perfect for Family Vacations and executive retreats. We are in a gated beachfront estate, with lots of space for your activities.
    Listing URL: https://www.airbnb.com/rooms/10317142
    Summary: This is a gorgeous home just off the main rd, with lots of sun and new amenities. room has own entrance with small deck, close proximity to the beach , bus to the junction , around the corner form all the cafes, bars and restaurants (2 mins).
    Listing URL: https://www.airbnb.com/rooms/11719579
2

Run the following command to pull the generative model:

ollama pull mistral
3

Create a file called local-llm.go and paste the following code:

local-llm.go
package main
import (
"context"
"local-rag-mongodb/common" // Module that contains the RetrieveDocuments function
"log"
"strings"
"github.com/tmc/langchaingo/llms"
"github.com/tmc/langchaingo/llms/ollama"
"github.com/tmc/langchaingo/prompts"
)
func main() {
// Retrieve documents from the collection that match the query
const query = "beach house"
matchingDocuments := common.RetrieveDocuments(query)
if matchingDocuments == nil {
log.Fatalf("no documents matched the query %q", query)
}
// Generate the text string from the matching documents to pass to the
// LLM as context to answer the question
var textDocuments strings.Builder
for _, doc := range matchingDocuments {
textDocuments.WriteString("Summary: ")
textDocuments.WriteString(doc.Summary)
textDocuments.WriteString("\n")
textDocuments.WriteString("Listing URL: ")
textDocuments.WriteString(doc.ListingURL)
textDocuments.WriteString("\n")
}
// Have the LLM answer the question using the provided context
llm, err := ollama.New(ollama.WithModel("mistral"))
if err != nil {
log.Fatalf("failed to initialize the Ollama Mistral model client: %v", err)
}
const question = `Can you recommend me a few AirBnBs that are beach houses?
Include a link to the listings.`
template := prompts.NewPromptTemplate(
`Use the following pieces of context to answer the question at the end.
Context: {{.context}}
Question: {{.question}}`,
[]string{"context", "question"},
)
prompt, err := template.Format(map[string]any{
"context": textDocuments.String(),
"question": question,
})
ctx := context.Background()
completion, err := llms.GenerateFromSinglePrompt(ctx, llm, prompt)
if err != nil {
log.Fatalf("failed to generate a response from the given prompt: %q", prompt)
}
log.Println("Response: ", completion)
}

This code does the following:

  • Creates an embedding for your query string.

  • Queries for relevant documents.

  • Prompts the LLM and returns the response. The generated response might vary.

Run the following code to complete your RAG implementation:

go run local-llm.go
2024/10/09 10:34:02 Response: Based on the context provided, here are some Airbnb listings for beach houses that you might find interesting:
1. Lani Beach House (Hawaii) - [Link](https://www.airbnb.com/rooms/11553333)
2. Peaceful North Bondi House (Australia) - [Link](https://www.airbnb.com/rooms/10423504)
3. Ocean Living! Secluded Secret Beach! (Florida, USA) - [Link](https://www.airbnb.com/rooms/10317142)
4. Gorgeous Home just off the main road (California, USA) - [Link](https://www.airbnb.com/rooms/11719579)

This section demonstrates a sample RAG implementation that you can run locally using Atlas Vector Search and Ollama.

1

Create a new file called LocalLLM.java and paste the following code.

This code uses the getEmbedding and retrieveDocuments methods and the Ollama chatmodel to do the following:

  1. Connect to your local Atlas deployment or your Atlas cluster

  2. Generate an embedding for the query string using the getEmbedding method you defined previously.

  3. Query the collection for relevant documents using the retrieveDocuments method.

    Our query includes an aggregation pipeline with a projection stage to return only the listing_url, summary, and vector score fields. You can modify or remove this pipeline to better suit your data and use case.

  4. Create a context by concatenating a question with the retrieved documents using the createPrompt method.

  5. Feed the created prompt to the LLM chatmodel you defined previously to generate a response.

  6. Print the question and generated response to the console.

    Note

    For demonstration purposes, we also print the filled-in prompt with context information. You should remove this line in a production environment.

LocalLLM.java
import com.mongodb.MongoException;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.model.search.FieldSearchPath;
import dev.langchain4j.data.message.AiMessage;
import dev.langchain4j.model.input.Prompt;
import dev.langchain4j.model.input.PromptTemplate;
import dev.langchain4j.model.ollama.OllamaChatModel;
import org.bson.BsonArray;
import org.bson.BsonValue;
import org.bson.Document;
import org.bson.conversions.Bson;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import static com.mongodb.client.model.Aggregates.project;
import static com.mongodb.client.model.Aggregates.vectorSearch;
import static com.mongodb.client.model.Projections.exclude;
import static com.mongodb.client.model.Projections.fields;
import static com.mongodb.client.model.Projections.include;
import static com.mongodb.client.model.Projections.metaVectorSearchScore;
import static com.mongodb.client.model.search.SearchPath.fieldPath;
import static com.mongodb.client.model.search.VectorSearchOptions.exactVectorSearchOptions;
import static java.util.Arrays.asList;
public class LocalLLM {
// User input: the question to answer
static String question = "Can you recommend me a few AirBnBs that are beach houses? Include a link to the listings.";
public static void main(String[] args) {
String uri = System.getenv("ATLAS_CONNECTION_STRING");
if (uri == null || uri.isEmpty()) {
throw new IllegalStateException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
}
// establish connection and set namespace
try (MongoClient mongoClient = MongoClients.create(uri)) {
MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
// generate a response to the user question
System.out.println("Question: " + question);
try {
createPrompt(question, collection);
} catch (Exception e) {
throw new RuntimeException("An error occurred while generating the response: ", e);
}
} catch (MongoException me) {
throw new RuntimeException("Failed to connect to MongoDB ", me);
} catch (Exception e) {
throw new RuntimeException("Operation failed: ", e);
}
}
/**
* Returns a list of documents from the specified MongoDB collection that
* match the user's question.
* NOTE: Update or omit the projection stage to change the desired fields in the response
*/
public static List<Document> retrieveDocuments(String question, MongoCollection<Document> collection) {
try {
// generate the query embedding to use in the vector search
BsonArray queryEmbeddingBsonArray = OllamaModels.getEmbedding(question);
List<Double> queryEmbedding = new ArrayList<>();
for (BsonValue value : queryEmbeddingBsonArray.stream().toList()) {
queryEmbedding.add(value.asDouble().getValue());
}
// define the pipeline stages for the vector search index
String indexName = "vector_index";
FieldSearchPath fieldSearchPath = fieldPath("embeddings");
int limit = 5;
List<Bson> pipeline = asList(
vectorSearch(
fieldSearchPath,
queryEmbedding,
indexName,
limit,
exactVectorSearchOptions()),
project(
fields(
exclude("_id"),
include("listing_url"),
include("summary"),
metaVectorSearchScore("score"))));
// run the query and return the matching documents
List<Document> matchingDocuments = new ArrayList<>();
collection.aggregate(pipeline).forEach(matchingDocuments::add);
return matchingDocuments;
} catch (Exception e) {
System.err.println("Error occurred while retrieving documents: " + e.getMessage());
return new ArrayList<>();
}
}
/**
* Creates a templated prompt using the question and retrieved documents, then generates
* a response using the local Ollama chat model.
*/
public static void createPrompt(String question, MongoCollection<Document> collection) {
// Retrieve documents matching the user's question
List<Document> retrievedDocuments = retrieveDocuments(question, collection);
if (retrievedDocuments.isEmpty()) {
System.out.println("No relevant documents found. Unable to generate a response.");
return;
} else
System.out.println("Generating a response from the retrieved documents. This may take a few moments.");
// Create a prompt template
OllamaChatModel ollamaChatModel = OllamaModels.getChatModel();
PromptTemplate promptBuilder = PromptTemplate.from("""
Use the following pieces of context to answer the question at the end:
{{information}}
---------------
{{question}}
""");
// build the information string from the retrieved documents
StringBuilder informationBuilder = new StringBuilder();
for (int i = 0; i < retrievedDocuments.size(); i++) {
Document doc = retrievedDocuments.get(i);
String listingUrl = doc.getString("listing_url");
String summary = doc.getString("summary");
informationBuilder.append("Listing URL: ").append(listingUrl)
.append("\nSummary: ").append(summary)
.append("\n\n");
}
String information = informationBuilder.toString();
Map<String, Object> variables = new HashMap<>();
variables.put("question", question);
variables.put("information", information);
// generate and output the response from the chat model
Prompt prompt = promptBuilder.apply(variables);
AiMessage response = ollamaChatModel.generate(prompt.toUserMessage()).content();
System.out.println("Answer: " + response.text());
// display the filled-in prompt and context information
// NOTE: included for demonstration purposes only
System.out.println("______________________");
System.out.println("Final Prompt Sent to LLM:");
System.out.println(prompt.text());
System.out.println("______________________");
System.out.println("Number of documents in context: " + retrievedDocuments.size());
}
}
2

Run the following command to pull the generative model:

ollama pull mistral
3

Save and run the file to complete your RAG implementation. The output resembles the following, although your generated response may vary:

Response output
Question: Can you recommend me a few AirBnBs that are beach houses? Include a link to the listings.
Generating a response from the retrieved documents. This may take a few moments.
Answer: Based on the context provided, here are some beach house Airbnb listings that might suit your needs:
1. Lani Beach House - Aloha: This luxurious beach house offers ocean views from all bedrooms and features vaulted ceilings, skylights, granite countertops, stainless steel appliances, and a gourmet kitchen. You can find it at this link: https://www.airbnb.com/rooms/11553333
2. Ocean Living! Secluded Secret Beach!: This spacious 4-bedroom, 4-bath beach house is perfect for families or groups and is less than 20 steps from the ocean. It's located in a gated beachfront estate with lots of space for activities. You can find it at this link: https://www.airbnb.com/rooms/10317142
3. A beautiful and comfortable 1-Bedroom Condo in Makaha Valley: This condo offers stunning ocean and mountain views, a full kitchen, large bathroom, and is suited for longer stays. The famous Makaha Surfing Beach is not even a mile away. You can find it at this link: https://www.airbnb.com/rooms/10266175
4. There are 2 bedrooms and a living room in the house: This listing does not provide much information about the beach, but it mentions that the house is close to the sea side and historical places. You can find it at this link: https://www.airbnb.com/rooms/10488837
5. The Apartment on Copacabana beach block: This apartment is well-located, a 5-minute walk from Ipanema beach, and offers all the amenities of home, including a kitchen, washing machine, and several utensils for use. You can find it at this link: https://www.airbnb.com/rooms/10038496
______________________
Final Prompt Sent to LLM:
Use the following pieces of context to answer the question at the end:
Listing URL: https://www.airbnb.com/rooms/11553333
Summary: "Lani Beach House" Aloha - Please do not reserve until reading about the State Tax in "Other Things to Note" section. Please do not reserve unless you agree to pay taxes to Hawaii Beach Homes directly. If you have questions, please inquire before booking. The home has been completely redecorated in a luxurious island style: vaulted ceilings, skylights, granite counter tops, stainless steel appliances and a gourmet kitchen are just some of the the features. All bedrooms have ocean views
Listing URL: https://www.airbnb.com/rooms/10317142
Summary: Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! This spacious 4 Bedroom and 4 Bath house has all you need for your family or group. Perfect for Family Vacations and executive retreats. We are in a gated beachfront estate, with lots of space for your activities.
Listing URL: https://www.airbnb.com/rooms/10266175
Summary: A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.
Listing URL: https://www.airbnb.com/rooms/10488837
Summary: There are 2 bedrooms and a living room in the house. 1 Bathroom. 1 Kitchen. Friendly neighbourhood. Close to sea side and Historical places.
Listing URL: https://www.airbnb.com/rooms/10038496
Summary: The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.
---------------
Can you recommend me a few AirBnBs that are beach houses? Include a link to the listings.
______________________
Number of documents in context: 5

This section demonstrates a sample RAG implementation that you can run locally using Atlas Vector Search and GPT4All.

1

Create a file called retrieve-documents.js and paste the following code into it:

retrieve-documents.js
import { MongoClient } from 'mongodb';
import { getEmbeddings } from './get-embeddings.js';
// Function to get the results of a vector query
export async function getQueryResults(query) {
// Connect to your Atlas cluster
const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
try {
// Get embeddings for a query
const queryEmbeddings = await getEmbeddings(query);
await client.connect();
const db = client.db("sample_airbnb");
const collection = db.collection("listingsAndReviews");
const pipeline = [
{
$vectorSearch: {
index: "vector_index",
queryVector: queryEmbeddings,
path: "embeddings",
exact: true,
limit: 5
}
}, {
$project: {
_id: 0,
summary: 1,
listing_url: 1,
score: {
$meta: "vectorSearchScore"
}
}
}
];
// Retrieve documents from Atlas using this Vector Search query
const result = collection.aggregate(pipeline);
const arrayOfQueryDocs = [];
for await (const doc of result) {
arrayOfQueryDocs.push(doc);
}
return arrayOfQueryDocs;
} catch (err) {
console.log(err.stack);
}
finally {
await client.close();
}
}

This code performs a vector query on your local Atlas deployment or your Atlas cluster.

Run a test query to confirm you're getting the expected results. Create a new file called test-query.js, and paste the following code into it:

Run the following code to execute the query:

node --env-file=.env test-query.js
{
listing_url: 'https://www.airbnb.com/rooms/10317142',
summary: 'Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! This spacious 4 Bedroom and 4 Bath house has all you need for your family or group. Perfect for Family Vacations and executive retreats. We are in a gated beachfront estate, with lots of space for your activities.',
score: 0.8703486323356628
}
{
listing_url: 'https://www.airbnb.com/rooms/10488837',
summary: 'There are 2 bedrooms and a living room in the house. 1 Bathroom. 1 Kitchen. Friendly neighbourhood. Close to sea side and Historical places.',
score: 0.861828088760376
}
{
listing_url: 'https://www.airbnb.com/rooms/11719579',
summary: 'This is a gorgeous home just off the main rd, with lots of sun and new amenities. room has own entrance with small deck, close proximity to the beach , bus to the junction , around the corner form all the cafes, bars and restaurants (2 mins).',
score: 0.8616757392883301
}
{
listing_url: 'https://www.airbnb.com/rooms/12657285',
summary: 'This favourite home offers a huge balcony, lots of space, easy life, all the comfort you need and a fantastic location! The beach is only 3 minutes away. Metro is 2 blocks away (starting august 2016).',
score: 0.8583258986473083
}
{
listing_url: 'https://www.airbnb.com/rooms/10985735',
summary: '5 minutes to seaside where you can swim, and 5 minutes to the woods, this two floors single house contains a cultivated garden with fruit trees, two large bedrooms and a big living room with a large sea view.',
score: 0.8573609590530396
}
2
  1. Click the following button to download the Mistral 7B model from GPT4All. To explore other models, refer to the GPT4All website.

    Download
  2. Move this model into your local-rag-mongodb project directory.

  3. In your project directory, download the file that contains the model information.

    curl -L https://gpt4all.io/models/models3.json -o ./models3.json
3

Create a file called local-llm.js and paste the following code:

local-llm.js
import { loadModel, createCompletionStream } from "gpt4all";
import { getQueryResults } from './retrieve-documents.js';
async function run() {
try {
const query = "beach house";
const documents = await getQueryResults(query);
let textDocuments = "";
documents.forEach(doc => {
const summary = doc.summary;
const link = doc.listing_url;
const string = `Summary: ${summary} Link: ${link}. \n`
textDocuments += string;
});
const model = await loadModel(
"mistral-7b-openorca.gguf2.Q4_0.gguf", {
verbose: true,
allowDownload: false,
modelConfigFile: "./models3.json"
}
);
const question = "Can you recommend me a few AirBnBs that are beach houses? Include a link to the listings.";
const prompt = `Use the following pieces of context to answer the question at the end.
{${textDocuments}}
Question: {${question}}`;
process.stdout.write("Output: ");
const stream = createCompletionStream(model, prompt);
stream.tokens.on("data", (data) => {
process.stdout.write(data);
});
//wait till stream finishes.
await stream.result;
process.stdout.write("\n");
model.dispose();
console.log("\n Source documents: \n");
console.log(textDocuments);
} catch (err) {
console.log(err.stack);
}
}
run().catch(console.dir);

This code does the following:

  • Creates an embedding for your query string.

  • Queries for relevant documents.

  • Prompts the LLM and returns the response. The generated response might vary.

Run the following code to complete your RAG implementation:

node --env-file=.env local-llm.js
Found mistral-7b-openorca.gguf2.Q4_0.gguf at /Users/dachary.carey/.cache/gpt4all/mistral-7b-openorca.gguf2.Q4_0.gguf
Creating LLModel: {
llmOptions: {
model_name: 'mistral-7b-openorca.gguf2.Q4_0.gguf',
model_path: '/Users/dachary.carey/.cache/gpt4all',
library_path: '/Users/dachary.carey/temp/local-rag-mongodb/node_modules/gpt4all/runtimes/darwin/native;/Users/dachary.carey/temp/local-rag-mongodb',
device: 'cpu',
nCtx: 2048,
ngl: 100
},
modelConfig: {
systemPrompt: '<|im_start|>system\n' +
'You are MistralOrca, a large language model trained by Alignment Lab AI.\n' +
'<|im_end|>',
promptTemplate: '<|im_start|>user\n%1<|im_end|>\n<|im_start|>assistant\n%2<|im_end|>\n',
order: 'e',
md5sum: 'f692417a22405d80573ac10cb0cd6c6a',
name: 'Mistral OpenOrca',
filename: 'mistral-7b-openorca.gguf2.Q4_0.gguf',
filesize: '4108928128',
requires: '2.7.1',
ramrequired: '8',
parameters: '7 billion',
quant: 'q4_0',
type: 'Mistral',
description: '<strong>Strong overall fast chat model</strong><br><ul><li>Fast responses</li><li>Chat based model</li><li>Trained by Mistral AI<li>Finetuned on OpenOrca dataset curated via <a href="https://atlas.nomic.ai/">Nomic Atlas</a><li>Licensed for commercial use</ul>',
url: 'https://gpt4all.io/models/gguf/mistral-7b-openorca.gguf2.Q4_0.gguf',
path: '/Users/dachary.carey/.cache/gpt4all/mistral-7b-openorca.gguf2.Q4_0.gguf'
}
}
Output: Yes, here are a few AirBnB beach houses with links to the listings:
1. Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! - https://www.airbnb.com/rooms/10317142
2. 2 Bedrooms and a living room in the house. 1 Bathroom. 1 Kitchen. Friendly neighbourhood. Close to sea side and Historical places - https://www.airbnb.com/rooms/10488837
3. Gorgeous home just off the main rd, with lots of sun and new amenities. Room has own entrance with small deck, close proximity to the beach - https://www.airbnb.com/rooms/11719579
4. This favourite home offers a huge balcony, lots of space, easy life, all the comfort you need and a fantastic location! The beach is only 3 minutes away. Metro is 2 blocks away (starting august 2016) - https://www.airbnb.com/rooms/12657285
5. 5 minutes to seaside where you can swim, and 5 minutes to the woods, this two floors single house contains a cultivated garden with fruit trees, two large bedrooms and a big living room with a large sea view - https://www.airbnb.com/rooms/10985735
Source documents:
Summary: Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! This spacious 4 Bedroom and 4 Bath house has all you need for your family or group. Perfect for Family Vacations and executive retreats. We are in a gated beachfront estate, with lots of space for your activities. Link: https://www.airbnb.com/rooms/10317142.
Summary: There are 2 bedrooms and a living room in the house. 1 Bathroom. 1 Kitchen. Friendly neighbourhood. Close to sea side and Historical places. Link: https://www.airbnb.com/rooms/10488837.
Summary: This is a gorgeous home just off the main rd, with lots of sun and new amenities. room has own entrance with small deck, close proximity to the beach , bus to the junction , around the corner form all the cafes, bars and restaurants (2 mins). Link: https://www.airbnb.com/rooms/11719579.
Summary: This favourite home offers a huge balcony, lots of space, easy life, all the comfort you need and a fantastic location! The beach is only 3 minutes away. Metro is 2 blocks away (starting august 2016). Link: https://www.airbnb.com/rooms/12657285.
Summary: 5 minutes to seaside where you can swim, and 5 minutes to the woods, this two floors single house contains a cultivated garden with fruit trees, two large bedrooms and a big living room with a large sea view. Link: https://www.airbnb.com/rooms/10985735.

This section demonstrates a sample RAG implementation that you can run locally using Atlas Vector Search and GPT4All.

In your notebook, run the following code snippets:

1

In this step, you create a retrieval function called get_query_results that runs a sample vector search query. It uses the get_embedding function to create embeddings from the search query. Then, it runs the query to return semantically similar documents.

To learn more, see Run Vector Search Queries.

# Function to get the results of a vector search query
def get_query_results(query):
query_embedding = get_embedding(query)
pipeline = [
{
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embeddings",
"exact": True,
"limit": 5
}
}, {
"$project": {
"_id": 0,
"summary": 1,
"listing_url": 1,
"score": {
"$meta": "vectorSearchScore"
}
}
}
]
results = collection.aggregate(pipeline)
array_of_results = []
for doc in results:
array_of_results.append(doc)
return array_of_results

To check that the function returns relevant documents, run the following code to query for the search term beach house:

Note

Your output might vary since environmental differences can introduce slight variations to your embeddings.

import pprint
pprint.pprint(get_query_results("beach house"))
[{'listing_url': 'https://www.airbnb.com/rooms/10317142',
'score': 0.84868323802948,
'summary': 'Ocean Living! Secluded Secret Beach! Less than 20 steps to the '
'Ocean! This spacious 4 Bedroom and 4 Bath house has all you need '
'for your family or group. Perfect for Family Vacations and '
'executive retreats. We are in a gated beachfront estate, with '
'lots of space for your activities.'},
{'listing_url': 'https://www.airbnb.com/rooms/10488837',
'score': 0.8457906246185303,
'summary': 'There are 2 bedrooms and a living room in the house. 1 Bathroom. '
'1 Kitchen. Friendly neighbourhood. Close to sea side and '
'Historical places.'},
{'listing_url': 'https://www.airbnb.com/rooms/10423504',
'score': 0.830578088760376,
'summary': 'This peaceful house in North Bondi is 300m to the beach and a '
"minute's walk to cafes and bars. With 3 bedrooms, (can sleep up "
'to 8) it is perfect for families, friends and pets. The kitchen '
'was recently renovated and a new lounge and chairs installed. '
'The house has a peaceful, airy, laidback vibe - a perfect beach '
'retreat. Longer-term bookings encouraged. Parking for one car. A '
'parking permit for a second car can also be obtained on '
'request.'},
{'listing_url': 'https://www.airbnb.com/rooms/10548991',
'score': 0.8174338340759277,
'summary': 'Newly furnished two story home. The upstairs features a full '
...
{'listing_url': 'https://www.airbnb.com/rooms/10186755',
'score': 0.8083034157752991,
'summary': 'Near to underground metro station. Walking distance to seaside. '
'2 floors 1 entry. Husband, wife, girl and boy is living.'}]
2
  1. Click the following button to download the Mistral 7B model from GPT4All. To explore other models, refer to the GPT4All website.

    Download
  2. Move this model into your local-rag-mongodb project directory.

  3. In your notebook, run the following code to load the local LLM.

    from gpt4all import GPT4All
    local_llm_path = "./mistral-7b-openorca.gguf2.Q4_0.gguf"
    local_llm = GPT4All(local_llm_path)
3

Run the following code to complete your RAG implementation. This code does the following:

  • Queries your collection for relevant documents by using the function you just defined.

  • Prompts the LLM using the retrieved documents as context. The generated response might vary.

question = "Can you recommend a few AirBnBs that are beach houses? Include a link to the listing."
documents = get_query_results(question)
text_documents = ""
for doc in documents:
summary = doc.get("summary", "")
link = doc.get("listing_url", "")
string = f"Summary: {summary} Link: {link}. \n"
text_documents += string
prompt = f"""Use the following pieces of context to answer the question at the end.
{text_documents}
Question: {question}
"""
response = local_llm.generate(prompt)
cleaned_response = response.replace('\\n', '\n')
print(cleaned_response)
Answer: Yes, I can recommend a few AirBnB listings that are beach houses. Here they are with their respective links:
1. Ocean Living! Secluded Secret Beach! Less than 20 steps to the Ocean! (https://www.airbnb.com/rooms/10317142)
2. Beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views (https://www.airbnb.com/rooms/10266175)
3. Peaceful house in North Bondi, close to the beach and cafes (https://www.airbnb.com/rooms/10423504)

Back

Hybrid Search