How to Run an Atlas Search Compound Geo JSON Query
This tutorial describes how to create an index on the
listingsAndReviews
collection in the sample_airbnb
database
and run a query that returns documents with the
name
, address
, and property_type
for each property within the specified polygon defined using coordinates
.
This tutorial takes you through the following steps:
Set up an Atlas Search index on the
address
field in thesample_airbnb.listingsAndReviews
collection.Run a query that returns 10 documents with the
name
,address
, andproperty_type
of each property within the specified geographiccoordinates
. Atlas Search results reflect a preference for properties of typecondominium
, and each document in the result is assigned a relevancescore
, returned in order from highest to lowest.
Before you begin, ensure that your Atlas cluster meets the requirements described in the Prerequisites.
To create an Atlas Search index, you must have Project Data Access Admin
or higher access to the project.
Create the Atlas Search Index
In this section, you will create an Atlas Search index on the address
field
in the sample_airbnb.listingsAndReviews
collection.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If it's not already displayed, click Clusters in the sidebar.
The Clusters page displays.
Enter the Index Name, and set the Database and Collection.
In the Index Name field, enter
geo-json-tutorial
.If you name your index
default
, you don't need to specify anindex
parameter in the $search pipeline stage. If you give a custom name to your index, you must specify this name in theindex
parameter.In the Database and Collection section, find the
sample_airbnb
database, and select thelistingsAndReviews
collection.
Define an index on the address
field.
You can use the Atlas Search Visual Editor or the Atlas Search JSON Editor in the Atlas user interface to create the index. The following index definition specifies that Atlas Search must index:
All of the fields in the collection automatically.
The
address.location
field of adocument
as typegeo
.
Click Next.
Click Refine Your Index.
In the Field Mappings section, click Add Field to open the Add Field Mapping > Customized Configuration tab.
Select address.location from the Field Name dropdown.
Click the Data Type dropdown and select Geo.
Click Add.
Click Save Changes.
Replace the default index definition with the following example index definition.
{ "mappings": { "dynamic": true, "fields": { "address": { "fields": { "location": { "type": "geo" } }, "type": "document" } } } } Click Next.
Run a Combined Geo, Number, and Text Fields Query
➤ Use the Select your language drop-down menu on this page to set the language of the examples in this section.
In this section, you will run a query that returns 10 documents with the
name
, address
, and property_type
for each property within the specified
geographic coordinates
.
A field specifying each documents score
is also returned,
and results are ordered with a preference for
properties of type condominium
.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If it's not already displayed, click Clusters in the sidebar.
The Clusters page displays.
Run an Atlas Search compound query with the geoWithin
operator on the sample_airbnb.listingsAndReviews
collection.
The following Atlas Search query uses the compound operator to:
Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Note
The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.
[ { "$search": { "index": "geo-json-tutorial", "compound": { "must": [{ "geoWithin": { "geometry": { "type": "Polygon", "coordinates": [[[ -161.323242, 22.512557 ], [ -152.446289, 22.065278 ], [ -156.09375, 17.811456 ], [ -161.323242, 22.512557 ]]] }, "path": "address.location" } }], "should": [{ "text": { "path": "property_type", "query": "Condominium" } }] } } } ]
1 SCORE: 2.238388776779175 _id: "1001265" 2 listing_url: "https://www.airbnb.com/rooms/1001265" 3 name: "Ocean View Waikiki Marina w/prkg" 4 summary: "A short distance from Honolulu's billion dollar mall, 5 and the same dis…" 6 ... 7 property_type: "Condominium" 8 ... 9 address: Object 10 street: "Honolulu, HI, United States" 11 suburb: "Oʻahu" 12 government_area: "Primary Urban Center" 13 market: "Oahu" 14 country: "United States" 15 country_code: "US" 16 location: Object 17 type: "Point" 18 coordinates: Array 19 0: -157.83919 20 1: 21.28634 21 is_location_exact: true 22 ... 23 24 SCORE: 2.238388776779175 _id: "10227000" 25 listing_url: "https://www.airbnb.com/rooms/10227000" 26 name: "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!" 27 summary: "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIF…" 28 ... 29 property_type: "Condominium" 30 ... 31 address: Object 32 street: "Lahaina, HI, United States" 33 suburb: "Maui" 34 government_area: "Lahaina" 35 market: "Maui" 36 country: "United States" 37 country_code: "US" 38 location: Object 39 type: "Point" 40 coordinates: Array 41 0: -156.68012 42 1: 20.96996 43 is_location_exact: true 44 ... 45 46 SCORE: 2.238388776779175 _id: "10266175" 47 listing_url: "https://www.airbnb.com/rooms/10266175" 48 name: "Makaha Valley Paradise with OceanView" 49 summary: "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha …" 50 ... 51 property_type: "Condominium" 52 ... 53 address: Object 54 street: "Waianae, HI, United States" 55 suburb: "Leeward Side" 56 government_area: "Waianae" 57 market: "Oahu" 58 country: "United States" 59 country_code: "US" 60 location: Object 61 type: "Point" 62 coordinates: Array 63 0: -158.20291 64 1: 21.4818 65 is_location_exact: true 66 ... 67 68 SCORE: 2.238388776779175 _id: "1042446" 69 listing_url: "https://www.airbnb.com/rooms/1042446" 70 name: "March 2019 availability! Oceanview on Sugar Beach!" 71 summary: "" 72 ... 73 property_type: "Condominium" 74 ... 75 address: Object 76 street: "Kihei, HI, United States" 77 suburb: "Maui" 78 government_area: "Kihei-Makena" 79 market: "Maui" 80 country: "United States" 81 country_code: "US" 82 location: Object 83 type: "Point" 84 coordinates: Array 85 0: -156.46881 86 1: 20.78621 87 is_location_exact: true 88 ... 89 90 SCORE: 2.238388776779175 _id: "10527243" 91 listing_url: "https://www.airbnb.com/rooms/10527243" 92 name: "Tropical Jungle Oasis" 93 summary: "2 bedrooms, one with a queen sized bed, one with 2 single beds. 1 and …" 94 ... 95 property_type: "Condominium" 96 ... 97 address: Object 98 street: "Hilo, HI, United States" 99 suburb: "Island of Hawaiʻi" 100 government_area: "South Hilo" 101 market: "The Big Island" 102 country: "United States" 103 country_code: "US" 104 location: Object 105 type: "Point" 106 coordinates: Array 107 0: -155.09259 108 1: 19.73108 109 is_location_exact: true 110 ... 111 112 SCORE: 2.238388776779175 _id: "1104768" 113 listing_url: "https://www.airbnb.com/rooms/1104768" 114 name: "2 Bdrm/2 Bath Family Suite Ocean View" 115 summary: "This breathtaking 180 degree view of Waikiki is one of a kind. You wil…" 116 ... 117 property_type: "Condominium" 118 ... 119 address: Object 120 street: "Honolulu, HI, United States" 121 suburb: "Waikiki" 122 government_area: "Primary Urban Center" 123 market: "Oahu" 124 country: "United States" 125 country_code: "US" 126 location: Object 127 type: "Point" 128 coordinates: Array 129 0: -157.82696 130 1: 21.27971 131 is_location_exact: true 132 ... 133 134 SCORE: 2.238388776779175 _id: "11207193" 135 listing_url: "https://www.airbnb.com/rooms/11207193" 136 name: "302 Kanai A Nalu Ocean front/view" 137 summary: "Welcome to Kana'i A Nalu a quiet resort that sits on the ocean away fr…" 138 ... 139 property_type: "Condominium" 140 ... 141 address: Object 142 street: "Wailuku, HI, United States" 143 suburb: "Maui" 144 government_area: "Kihei-Makena" 145 market: "Maui" 146 country: "United States" 147 country_code: "US" 148 location: Object 149 type: "Point" 150 coordinates: Array 151 0: -156.5039 152 1: 20.79664 153 is_location_exact: true 154 ... 155 156 SCORE: 2.238388776779175 _id: "11319047" 157 listing_url: "https://www.airbnb.com/rooms/11319047" 158 name: "Sugar Beach Resort 1BR Ground Floor Condo !" 159 summary: "The Sugar Beach Resort enjoys a beachfront setting fit for a postcard." 160 ... 161 property_type: "Condominium" 162 ... 163 address: Object 164 street: "Kihei, HI, United States" 165 suburb: "Maui" 166 government_area: "Kihei-Makena" 167 market: "Maui" 168 country: "United States" 169 country_code: "US" 170 location: Object 171 type: "Point" 172 coordinates: Array 173 0: -156.46697 174 1: 20.78484 175 is_location_exact: true 176 ... 177 178 SCORE: 2.238388776779175 _id: "11695887" 179 listing_url: "https://www.airbnb.com/rooms/11695887" 180 name: "2 BR Oceanview - Great Location!" 181 summary: "Location, location, location... This is a great 2 bed, 2 bath condo is…" 182 ... 183 property_type: "Condominium" 184 ... 185 address: Object 186 street: "Kihei, HI, United States" 187 suburb: "Kihei/Wailea" 188 government_area: "Kihei-Makena" 189 market: "Maui" 190 country: "United States" 191 country_code: "US" 192 location: Object 193 type: "Point" 194 coordinates: Array 195 0: -156.44917 196 1: 20.73013 197 is_location_exact: true 198 ... 199 200 SCORE: 2.238388776779175 _id: "11817249" 201 listing_url: "https://www.airbnb.com/rooms/11817249" 202 name: "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC" 203 summary: "Book with confidence this stunning 2 bedroom, 2 bathroom condo at the …" 204 ... 205 property_type: "Condominium" 206 ... 207 address: Object 208 street: "Kihei, HI, United States" 209 suburb: "Maui" 210 government_area: "Kihei-Makena" 211 market: "Maui" 212 country: "United States" 213 country_code: "US" 214 location: Object 215 type: "Point" 216 coordinates: Array 217 0: -156.4409 218 1: 20.69735 219 is_location_exact: true 220 ...
Connect to your cluster in mongosh
.
Open mongosh
in a terminal window and
connect to your cluster. For detailed instructions on connecting,
see Connect via mongosh
.
Use the sample_airbnb
database.
Run the following command at mongosh
prompt:
use sample_airbnb
Run the combined Atlas Search query in the mongosh
.
The following Atlas Search query:
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
The query is as follows:
db.listingsAndReviews.aggregate([ { "$search": { "index": "geo-json-tutorial", "compound": { "must": [{ "geoWithin": { "geometry": { "type": "Polygon", "coordinates": [[[ -161.323242, 22.512557 ], [ -152.446289, 22.065278 ], [ -156.09375, 17.811456 ], [ -161.323242, 22.512557 ]]] }, "path": "address.location" } }], "should": [{ "text": { "path": "property_type", "query": "Condominium" } }] } } }, { "$limit": 10 }, { $project: { "_id": 0, "name": 1, "address": 1, "property_type": 1, score: { $meta: "searchScore" } } } ])
[ { name: 'Ocean View Waikiki Marina w/prkg', property_type: 'Condominium', address: { street: 'Honolulu, HI, United States', suburb: 'Oʻahu', government_area: 'Primary Urban Center', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -157.83919, 21.28634 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!', property_type: 'Condominium', address: { street: 'Lahaina, HI, United States', suburb: 'Maui', government_area: 'Lahaina', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.68012, 20.96996 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Makaha Valley Paradise with OceanView', property_type: 'Condominium', address: { street: 'Waianae, HI, United States', suburb: 'Leeward Side', government_area: 'Waianae', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -158.20291, 21.4818 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'March 2019 availability! Oceanview on Sugar Beach!', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.46881, 20.78621 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Tropical Jungle Oasis', property_type: 'Condominium', address: { street: 'Hilo, HI, United States', suburb: 'Island of Hawaiʻi', government_area: 'South Hilo', market: 'The Big Island', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -155.09259, 19.73108 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '2 Bdrm/2 Bath Family Suite Ocean View', property_type: 'Condominium', address: { street: 'Honolulu, HI, United States', suburb: 'Waikiki', government_area: 'Primary Urban Center', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -157.82696, 21.27971 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '302 Kanai A Nalu Ocean front/view', property_type: 'Condominium', address: { street: 'Wailuku, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.5039, 20.79664 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Sugar Beach Resort 1BR Ground Floor Condo !', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.46697, 20.78484 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '2 BR Oceanview - Great Location!', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Kihei/Wailea', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.44917, 20.73013 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.4409, 20.69735 ], is_location_exact: true } }, score: 2.238388776779175 } ]
Connect to your cluster in MongoDB Compass.
Open MongoDB Compass and connect to your cluster. For detailed instructions on connecting, see Connect via Compass.
Run an Atlas Search query on the listingsAndReviews
collection.
The following query:
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
To run this Atlas Search query in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
Pipeline StageQuery$search
{ 'index': 'geo-json-tutorial', 'compound': { 'must': [ { 'geoWithin': { 'geometry': { 'type': 'Polygon', 'coordinates': [ [ [ -161.323242, 22.512557 ], [ -152.446289, 22.065278 ], [ -156.09375, 17.811456 ], [ -161.323242, 22.512557 ] ] ] }, 'path': 'address.location' } } ], 'should': [ { 'text': { 'path': 'property_type', 'query': 'Condominium' } } ] } } $limit
10 $project
{ '_id': 0, 'name': 1, 'address': 1, 'property_type': 1, 'score': { '$meta': 'searchScore' } }
If you enabled Auto Preview, MongoDB Compass displays the
following documents next to the $project
pipeline stage:
1 { 2 name: 'Ocean View Waikiki Marina w/prkg', 3 property_type: 'Condominium', 4 address: { 5 street: 'Honolulu, HI, United States', 6 suburb: 'Oʻahu', 7 government_area: 'Primary Urban Center', 8 market: 'Oahu', 9 country: 'United States', 10 country_code: 'US', 11 location: { 12 type: 'Point', 13 coordinates: [ -157.83919, 21.28634 ], 14 is_location_exact: true 15 } 16 }, 17 score: 2.238388776779175 18 }, 19 { 20 name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!', 21 property_type: 'Condominium', 22 address: { 23 street: 'Lahaina, HI, United States', 24 suburb: 'Maui', 25 government_area: 'Lahaina', 26 market: 'Maui', 27 country: 'United States', 28 country_code: 'US', 29 location: { 30 type: 'Point', 31 coordinates: [ -156.68012, 20.96996 ], 32 is_location_exact: true 33 } 34 }, 35 score: 2.238388776779175 36 }, 37 { 38 name: 'Makaha Valley Paradise with OceanView', 39 property_type: 'Condominium', 40 address: { 41 street: 'Waianae, HI, United States', 42 suburb: 'Leeward Side', 43 government_area: 'Waianae', 44 market: 'Oahu', 45 country: 'United States', 46 country_code: 'US', 47 location: { 48 type: 'Point', 49 coordinates: [ -158.20291, 21.4818 ], 50 is_location_exact: true 51 } 52 }, 53 score: 2.238388776779175 54 }, 55 { 56 name: 'March 2019 availability! Oceanview on Sugar Beach!', 57 property_type: 'Condominium', 58 address: { 59 street: 'Kihei, HI, United States', 60 suburb: 'Maui', 61 government_area: 'Kihei-Makena', 62 market: 'Maui', 63 country: 'United States', 64 country_code: 'US', 65 location: { 66 type: 'Point', 67 coordinates: [ -156.46881, 20.78621 ], 68 is_location_exact: true 69 } 70 }, 71 score: 2.238388776779175 72 }, 73 { 74 name: 'Tropical Jungle Oasis', 75 property_type: 'Condominium', 76 address: { 77 street: 'Hilo, HI, United States', 78 suburb: 'Island of Hawaiʻi', 79 government_area: 'South Hilo', 80 market: 'The Big Island', 81 country: 'United States', 82 country_code: 'US', 83 location: { 84 type: 'Point', 85 coordinates: [ -155.09259, 19.73108 ], 86 is_location_exact: true 87 } 88 }, 89 score: 2.238388776779175 90 }, 91 { 92 name: '2 Bdrm/2 Bath Family Suite Ocean View', 93 property_type: 'Condominium', 94 address: { 95 street: 'Honolulu, HI, United States', 96 suburb: 'Waikiki', 97 government_area: 'Primary Urban Center', 98 market: 'Oahu', 99 country: 'United States', 100 country_code: 'US', 101 location: { 102 type: 'Point', 103 coordinates: [ -157.82696, 21.27971 ], 104 is_location_exact: true 105 } 106 }, 107 score: 2.238388776779175 108 }, 109 { 110 name: '302 Kanai A Nalu Ocean front/view', 111 property_type: 'Condominium', 112 address: { 113 street: 'Wailuku, HI, United States', 114 suburb: 'Maui', 115 government_area: 'Kihei-Makena', 116 market: 'Maui', 117 country: 'United States', 118 country_code: 'US', 119 location: { 120 type: 'Point', 121 coordinates: [ -156.5039, 20.79664 ], 122 is_location_exact: true 123 } 124 }, 125 score: 2.238388776779175 126 }, 127 { 128 name: 'Sugar Beach Resort 1BR Ground Floor Condo !', 129 property_type: 'Condominium', 130 address: { 131 street: 'Kihei, HI, United States', 132 suburb: 'Maui', 133 government_area: 'Kihei-Makena', 134 market: 'Maui', 135 country: 'United States', 136 country_code: 'US', 137 location: { 138 type: 'Point', 139 coordinates: [ -156.46697, 20.78484 ], 140 is_location_exact: true 141 } 142 }, 143 score: 2.238388776779175 144 }, 145 { 146 name: '2 BR Oceanview - Great Location!', 147 property_type: 'Condominium', 148 address: { 149 street: 'Kihei, HI, United States', 150 suburb: 'Kihei/Wailea', 151 government_area: 'Kihei-Makena', 152 market: 'Maui', 153 country: 'United States', 154 country_code: 'US', 155 location: { 156 type: 'Point', 157 coordinates: [ -156.44917, 20.73013 ], 158 is_location_exact: true 159 } 160 }, 161 score: 2.238388776779175 162 }, 163 { 164 name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC', 165 property_type: 'Condominium', 166 address: { 167 street: 'Kihei, HI, United States', 168 suburb: 'Maui', 169 government_area: 'Kihei-Makena', 170 market: 'Maui', 171 country: 'United States', 172 country_code: 'US', 173 location: { 174 type: 'Point', 175 coordinates: [ -156.4409, 20.69735 ], 176 is_location_exact: true 177 } 178 }, 179 score: 2.238388776779175 180 }
For more information about the $search pipeline stage, see its reference page. For complete aggregation pipeline documentation, see the MongoDB Server Manual.
Set up and initialize the .NET/C# project for the query.
Create a new directory called
combined-geo-query
and initialize your project with the dotnet new command.mkdir combined-geo-query cd combined-geo-query dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver
Create the query in the Program.cs
file.
Replace the contents of the the
Program.cs
file with the following code.The following Atlas Search query:
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
1 using MongoDB.Bson; 2 using MongoDB.Bson.IO; 3 using MongoDB.Bson.Serialization; 4 using MongoDB.Bson.Serialization.Attributes; 5 using MongoDB.Bson.Serialization.Conventions; 6 using MongoDB.Driver; 7 using MongoDB.Driver.GeoJsonObjectModel; 8 using MongoDB.Driver.Search; 9 using System; 10 11 public class GeoQuery 12 { 13 private const string MongoConnectionString = "<connection-string>"; 14 15 public static void Main(string[] args) 16 { 17 // allow automapping of the camelCase database fields to our AirbnbDocument 18 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 19 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 20 21 // connect to your Atlas cluster 22 var mongoClient = new MongoClient(MongoConnectionString); 23 var airbnbDatabase = mongoClient.GetDatabase("sample_airbnb"); 24 var airbnbCollection = airbnbDatabase.GetCollection<AirbnbDocument>("listingsAndReviews"); 25 26 // declare data for the compound query 27 string property_type = "Condominium"; 28 var coordinates = new GeoJson2DCoordinates[] 29 { 30 new(-161.323242, 22.512557), 31 new(-152.446289, 22.065278), 32 new(-156.09375, 17.811456), 33 new(-161.323242, 22.512557) 34 }; 35 var polygon = GeoJson.Polygon(coordinates); 36 37 // define and run pipeline 38 var results = airbnbCollection.Aggregate() 39 .Search(Builders<AirbnbDocument>.Search.Compound() 40 .Must(Builders<AirbnbDocument>.Search.GeoWithin(airbnb => airbnb.Address.Location, polygon)) 41 .Should((Builders<AirbnbDocument>.Search.Text(airbnb => airbnb.PropertyType, property_type))), 42 indexName: "geo-json-tutorial") 43 .Limit (10) 44 .Project<AirbnbDocument>(Builders<AirbnbDocument>.Projection 45 .Include(airbnb => airbnb.PropertyType) 46 .Include(airbnb => airbnb.Address.Location) 47 .Include(airbnb => airbnb.Name) 48 .Exclude(airbnb => airbnb.Id) 49 .MetaSearchScore(airbnb => airbnb.Score)) 50 .ToList(); 51 52 // print results 53 foreach (var x in results) { 54 Console.WriteLine(x.ToJson()); 55 } 56 } 57 } 58 [ ]59 public class AirbnbDocument 60 { 61 [ ]62 public ObjectId Id { get; set; } 63 public String Name { get; set; } 64 [ ]65 public string PropertyType { get; set; } 66 public Address Address { get; set; } 67 public double Score { get; set; } 68 } 69 [ ]70 public class Address 71 { 72 public GeoJsonPoint<GeoJson2DCoordinates> Location { get; set; } 73 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Compile and run the Program.cs
file.
dotnet run combined-geo-query.csproj
{ "name" : "Ocean View Waikiki Marina w/prkg", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-157.83919, 21.286339999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.68011999999999, 20.96996], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "Makaha Valley Paradise with OceanView", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-158.20291, 21.4818], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "March 2019 availability! Oceanview on Sugar Beach!", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.46880999999999, 20.786210000000001], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "Tropical Jungle Oasis", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-155.09259, 19.731079999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "2 Bdrm/2 Bath Family Suite Ocean View", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-157.82696000000001, 21.279710000000001], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "302 Kanai A Nalu Ocean front/view", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.50389999999999, 20.79664], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "Sugar Beach Resort 1BR Ground Floor Condo !", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.46697, 20.784839999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "2 BR Oceanview - Great Location!", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.44917000000001, 20.730129999999999], "is_location_exact" : true } }, "score" : 2.2383887767791748 } { "name" : "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC", "property_type" : "Condominium", "address" : { "location" : { "type" : "Point", "coordinates" : [-156.4409, 20.69735], "is_location_exact" : true } }, "score" : 2.2383887767791748 }
Copy and paste the code example into the run-geo-query.go
file.
The following code example:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
Iterates over the cursor to print the documents that match the query.
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 7 "go.mongodb.org/mongo-driver/bson" 8 "go.mongodb.org/mongo-driver/mongo" 9 "go.mongodb.org/mongo-driver/mongo/options" 10 ) 11 12 func main() { 13 // connect to your Atlas cluster 14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>")) 15 if err != nil { 16 panic(err) 17 } 18 defer client.Disconnect(context.TODO()) 19 20 // set namespace 21 collection := client.Database("sample_airbnb").Collection("listingsAndReviews") 22 23 // define polygon 24 polygon := [][][]float64{{ 25 {-161.323242, 22.512557}, 26 {-152.446289, 22.065278}, 27 {-156.09375, 17.811456}, 28 {-161.323242, 22.512557}, 29 }} 30 31 // define pipeline 32 searchStage := bson.D{{"$search", bson.M{ 33 "index": "geo-json-tutorial", 34 "compound": bson.M{ 35 "must": bson.M{ 36 "geoWithin": bson.M{ 37 "geometry": bson.M{ 38 "type": "Polygon", 39 "coordinates": polygon, 40 }, 41 "path": "address.location", 42 }, 43 }, 44 "should": bson.M{ 45 "text": bson.M{ 46 "path": "property_type", 47 "query": "Condominium", 48 }}, 49 }, 50 }, 51 }} 52 limitStage := bson.D{{"$limit", 10}} 53 projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 54 55 // run pipeline 56 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) 57 if err != nil { 58 panic(err) 59 } 60 61 // print results 62 var results []bson.D 63 if err = cursor.All(context.TODO(), &results); err != nil { 64 panic(err) 65 } 66 for _, result := range results { 67 fmt.Println(result) 68 } 69 }
Replace the <connection-string>
with your Atlas connection string.
Before you run the sample, replace <connection-string>
with your
Atlas connection string. Ensure that your connection string
includes your database user's credentials. To learn more, see
Connect via Drivers.
Compile and run the run-geo-query.go
file.
go run run-geo-query.go
[{name Ocean View Waikiki Marina w/prkg} {property_type Condominium} {address [{street Honolulu, HI, United States} {suburb Oʻahu} {government_area Primary Urban Center} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-157.83919 21.28634]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!} {property_type Condominium} {address [{street Lahaina, HI, United States} {suburb Maui} {government_area Lahaina} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.68012 20.96996]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name Makaha Valley Paradise with OceanView} {property_type Condominium} {address [{street Waianae, HI, United States} {suburb Leeward Side} {government_area Waianae} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-158.20291 21.4818]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name March 2019 availability! Oceanview on Sugar Beach!} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.46881 20.78621]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name Tropical Jungle Oasis} {property_type Condominium} {address [{street Hilo, HI, United States} {suburb Island of Hawaiʻi} {government_area South Hilo} {market The Big Island} {country United States} {country_code US} {location [{type Point} {coordinates [-155.09259 19.73108]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name 2 Bdrm/2 Bath Family Suite Ocean View} {property_type Condominium} {address [{street Honolulu, HI, United States} {suburb Waikiki} {government_area Primary Urban Center} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-157.82696 21.27971]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name 302 Kanai A Nalu Ocean front/view} {property_type Condominium} {address [{street Wailuku, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.5039 20.79664]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name Sugar Beach Resort 1BR Ground Floor Condo !} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.46697 20.78484]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name 2 BR Oceanview - Great Location!} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Kihei/Wailea} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.44917 20.73013]} {is_location_exact true}]}]} {score 2.238388776779175}] [{name PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.4409 20.69735]} {is_location_exact true}]}]} {score 2.238388776779175}]
Copy and paste the code example into the GeoQuery.java
file.
The following code example:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
- Iterates over the cursor to print the documents that match the
- query.
1 import java.util.Arrays; 2 import static com.mongodb.client.model.Filters.eq; 3 import static com.mongodb.client.model.Aggregates.limit; 4 import static com.mongodb.client.model.Aggregates.project; 5 import static com.mongodb.client.model.Projections.computed; 6 import static com.mongodb.client.model.Projections.excludeId; 7 import static com.mongodb.client.model.Projections.fields; 8 import static com.mongodb.client.model.Projections.include; 9 import com.mongodb.client.MongoClient; 10 import com.mongodb.client.MongoClients; 11 import com.mongodb.client.MongoCollection; 12 import com.mongodb.client.MongoDatabase; 13 import org.bson.Document; 14 15 public class GeoQuery { 16 public static void main( String[] args ) { 17 Document agg = new Document( "$search", 18 new Document( "index", "geo-json-tutorial") 19 .append("compound", 20 new Document("must", Arrays.asList(new Document("geoWithin", 21 new Document("geometry", 22 new Document("type", "Polygon") 23 .append("coordinates", Arrays.asList(Arrays.asList(Arrays.asList(-161.323242d, 22.512557d), Arrays.asList(-152.446289d, 22.065278d), Arrays.asList(-156.09375d, 17.811456d), Arrays.asList(-161.323242d, 22.512557d))))) 24 .append("path", "address.location")))) 25 .append("should", Arrays.asList(new Document("text", 26 new Document("path", "property_type") 27 .append("query", "Condominium")))))); 28 29 String uri = "<connection-string>"; 30 31 try (MongoClient mongoClient = MongoClients.create(uri)) { 32 MongoDatabase database = mongoClient.getDatabase("sample_airbnb"); 33 MongoCollection<Document> collection = database.getCollection("listingsAndReviews"); 34 35 collection.aggregate(Arrays.asList(agg, 36 limit(10), 37 project(fields(excludeId(), include("name", "address", "property_type"), computed("score", new Document("$meta", "searchScore")))))) 38 .forEach(doc -> System.out.println(doc.toJson() + "\n")); 39 } 40 } 41 }
Note
To run the sample code in your Maven environment, add the following above the import statements in your file.
package com.mongodb.drivers;
Replace the <connection-string>
with your Atlas connection string.
Before you run the sample, replace <connection-string>
with your
Atlas connection string. Ensure that your connection string
includes your database user's credentials. To learn more, see
Connect via Drivers.
Compile and run the GeoQuery.java
file.
javac GeoQuery.java java GeoQuery
{"name": "Ocean View Waikiki Marina w/prkg", "property_type": "Condominium", "address": {"street": "Honolulu, HI, United States", "suburb": "O\u02bbahu", "government_area": "Primary Urban Center", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-157.83919, 21.28634], "is_location_exact": true}}, "score": 1.0}, {"name": "Kailua-Kona, Kona Coast II 2b condo", "property_type": "Apartment", "address": {"street": "Kailua-Kona, HI, United States", "suburb": "Kailua/Kona", "government_area": "North Kona", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.96445, 19.5702], "is_location_exact": true}}, "score": 1.0}, {"name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type": "Condominium", "address": {"street": "Lahaina, HI, United States", "suburb": "Maui", "government_area": "Lahaina", "market": "Maui", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-156.68012, 20.96996], "is_location_exact": true}}, "score": 1.0}, {"name": "Makaha Valley Paradise with OceanView", "property_type": "Condominium", "address": {"street": "Waianae, HI, United States", "suburb": "Leeward Side", "government_area": "Waianae", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-158.20291, 21.4818], "is_location_exact": true}}, "score": 1.0}, {"name": "~Ao Lele~ Flying Cloud", "property_type": "Treehouse", "address": {"street": "Volcano, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "Puna", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.21763, 19.42151], "is_location_exact": false}}, "score": 1.0}, {"name": "Private OceanFront - Bathtub Beach. Spacious House", "property_type": "House", "address": {"street": "Laie, HI, United States", "suburb": "Ko'olauloa", "government_area": "Koolauloa", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-157.91952, 21.63549], "is_location_exact": true}}, "score": 1.0}, {"name": "Banyan Bungalow", "property_type": "Bungalow", "address": {"street": "Waialua, HI, United States", "suburb": "O\u02bbahu", "government_area": "North Shore Oahu", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-158.1602, 21.57561], "is_location_exact": false}}, "score": 1.0}, {"name": "March 2019 availability! Oceanview on Sugar Beach!", "property_type": "Condominium", "address": {"street": "Kihei, HI, United States", "suburb": "Maui", "government_area": "Kihei-Makena", "market": "Maui", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-156.46881, 20.78621], "is_location_exact": true}}, "score": 1.0}, {"name": "Tropical Jungle Oasis", "property_type": "Condominium", "address": {"street": "Hilo, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "South Hilo", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.09259, 19.73108], "is_location_exact": true}}, "score": 1.0}, {"name": "Jubilee By The Sea (Ocean Views)", "property_type": "House", "address": {"street": "Kailua-Kona, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "North Kona", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.97349, 19.61318], "is_location_exact": false}}, "score": 1.0}
Copy and paste the code example into the GeoQuery.kt
file.
The following code example:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
Prints the documents that match the query from the
AggregateFlow
instance.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // connect to your Atlas cluster 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 13 // set namespace 14 val database = mongoClient.getDatabase("sample_airbnb") 15 val collection = database.getCollection<Document>("listingsAndReviews") 16 17 runBlocking { 18 // define pipeline 19 val agg = Document( 20 "\$search", 21 Document("index", "geo-json-tutorial") 22 .append( 23 "compound", 24 Document( 25 "must", listOf( 26 Document( 27 "geoWithin", 28 Document( 29 "geometry", 30 Document("type", "Polygon") 31 .append( 32 "coordinates", 33 listOf( 34 listOf( 35 listOf(-161.323242, 22.512557), 36 listOf(-152.446289, 22.065278), 37 listOf(-156.09375, 17.811456), 38 listOf(-161.323242, 22.512557) 39 ) 40 ) 41 ) 42 ) 43 .append("path", "address.location") 44 ) 45 ) 46 ) 47 .append( 48 "should", listOf( 49 Document( 50 "text", 51 Document("path", "property_type") 52 .append("query", "Condominium") 53 ) 54 ) 55 ) 56 ) 57 ) 58 59 // run pipeline and print results 60 val resultsFlow = collection.aggregate<Document>( 61 listOf( 62 agg, 63 limit(10), 64 project(fields( 65 excludeId(), 66 include("name", "address", "property_type"), 67 computed("score", Document("\$meta", "searchScore")) 68 )) 69 ) 70 ) 71 resultsFlow.collect { println(it) } 72 } 73 mongoClient.close() 74 }
Replace the <connection-string>
with your Atlas connection string.
Before you run the sample, replace <connection-string>
with your
Atlas connection string. Ensure that your connection string
includes your database user's credentials. To learn more, see
Connect via Drivers.
Run the GeoQuery.kt
file.
When you run the GeoQuery.kt
program in your IDE, it prints
the following documents:
Document{{name=Ocean View Waikiki Marina w/prkg, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Oʻahu, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.83919, 21.28634], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!, property_type=Condominium, address=Document{{street=Lahaina, HI, United States, suburb=Maui, government_area=Lahaina, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.68012, 20.96996], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=Makaha Valley Paradise with OceanView, property_type=Condominium, address=Document{{street=Waianae, HI, United States, suburb=Leeward Side, government_area=Waianae, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-158.20291, 21.4818], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=March 2019 availability! Oceanview on Sugar Beach!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46881, 20.78621], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=Tropical Jungle Oasis, property_type=Condominium, address=Document{{street=Hilo, HI, United States, suburb=Island of Hawaiʻi, government_area=South Hilo, market=The Big Island, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-155.09259, 19.73108], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=2 Bdrm/2 Bath Family Suite Ocean View, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Waikiki, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.82696, 21.27971], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=302 Kanai A Nalu Ocean front/view, property_type=Condominium, address=Document{{street=Wailuku, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.5039, 20.79664], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=Sugar Beach Resort 1BR Ground Floor Condo !, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46697, 20.78484], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=2 BR Oceanview - Great Location!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Kihei/Wailea, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.44917, 20.73013], is_location_exact=true}}}}, score=2.238388776779175}} Document{{name=PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.4409, 20.69735], is_location_exact=true}}}}, score=2.238388776779175}}
Copy and paste the following code into the run-geo-query.js
file.
The following code example:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
Iterates over the cursor to print the documents that match the query.
1 const { MongoClient } = require("mongodb"); 2 3 // connect to your Atlas cluster 4 const uri ="<connection-string>"; 5 6 const client = new MongoClient(uri); 7 8 async function run() { 9 try { 10 await client.connect(); 11 12 // set namespace 13 const database = client.db("sample_airbnb"); 14 const coll = database.collection("listingsAndReviews"); 15 16 // define pipeline 17 const agg = [ 18 { 19 '$search': { 20 'index': 'geo-json-tutorial', 21 'compound': { 22 'must': [ 23 { 24 'geoWithin': { 25 'geometry': { 26 'type': 'Polygon', 27 'coordinates': [ 28 [ 29 [ 30 -161.323242, 22.512557 31 ], [ 32 -152.446289, 22.065278 33 ], [ 34 -156.09375, 17.811456 35 ], [ 36 -161.323242, 22.512557 37 ] 38 ] 39 ] 40 }, 41 'path': 'address.location' 42 } 43 } 44 ], 45 'should': [ 46 { 47 'text': { 48 'path': 'property_type', 49 'query': 'Condominium' 50 } 51 } 52 ] 53 } 54 } 55 }, { 56 '$limit': 10 57 }, { 58 '$project': { 59 '_id': 0, 60 'name': 1, 61 'address': 1, 62 'property_type': 1, 63 'score': { 64 '$meta': 'searchScore' 65 } 66 } 67 } 68 ]; 69 // run pipeline 70 const result = await coll.aggregate(agg); 71 72 // print results 73 await result.forEach((doc) => console.log(doc)); 74 } finally { 75 await client.close(); 76 } 77 } 78 run().catch(console.dir);
Replace the <connection-string>
with your Atlas connection string.
Before you run the sample, replace <connection-string>
with your
Atlas connection string. Ensure that your connection string
includes your database user's credentials. To learn more, see
Connect via Drivers.
Query your collection.
Run the following command to query your collection:
node run-geo-query.js
{ name: 'Ocean View Waikiki Marina w/prkg', property_type: 'Condominium', address: { street: 'Honolulu, HI, United States', suburb: 'Oʻahu', government_area: 'Primary Urban Center', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -157.83919, 21.28634 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!', property_type: 'Condominium', address: { street: 'Lahaina, HI, United States', suburb: 'Maui', government_area: 'Lahaina', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.68012, 20.96996 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Makaha Valley Paradise with OceanView', property_type: 'Condominium', address: { street: 'Waianae, HI, United States', suburb: 'Leeward Side', government_area: 'Waianae', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -158.20291, 21.4818 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'March 2019 availability! Oceanview on Sugar Beach!', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.46881, 20.78621 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Tropical Jungle Oasis', property_type: 'Condominium', address: { street: 'Hilo, HI, United States', suburb: 'Island of Hawaiʻi', government_area: 'South Hilo', market: 'The Big Island', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -155.09259, 19.73108 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '2 Bdrm/2 Bath Family Suite Ocean View', property_type: 'Condominium', address: { street: 'Honolulu, HI, United States', suburb: 'Waikiki', government_area: 'Primary Urban Center', market: 'Oahu', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -157.82696, 21.27971 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '302 Kanai A Nalu Ocean front/view', property_type: 'Condominium', address: { street: 'Wailuku, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.5039, 20.79664 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'Sugar Beach Resort 1BR Ground Floor Condo !', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.46697, 20.78484 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: '2 BR Oceanview - Great Location!', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Kihei/Wailea', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.44917, 20.73013 ], is_location_exact: true } }, score: 2.238388776779175 }, { name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC', property_type: 'Condominium', address: { street: 'Kihei, HI, United States', suburb: 'Maui', government_area: 'Kihei-Makena', market: 'Maui', country: 'United States', country_code: 'US', location: { type: 'Point', coordinates: [ -156.4409, 20.69735 ], is_location_exact: true } }, score: 2.238388776779175 }
Copy and paste the following code into the run-geo-query.py
file.
The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses a compound
$search
stage to:Specify that results
must
be within aPolygon
defined by a set ofcoordinates
.Give preference to results for properties of type
condominium
.
Uses a
$project
stage to:Exclude all fields except
name
,address
andproperty_type
.Add a relevance
score
to each returned document.
Iterates over the cursor to print the documents that match the query.
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 { 9 '$search': { 10 'index': 'geo-json-tutorial', 11 'compound': { 12 'must': [ 13 { 14 'geoWithin': { 15 'geometry': { 16 'type': 'Polygon', 17 'coordinates': [ 18 [ 19 [ 20 -161.323242, 22.512557 21 ], [ 22 -152.446289, 22.065278 23 ], [ 24 -156.09375, 17.811456 25 ], [ 26 -161.323242, 22.512557 27 ] 28 ] 29 ] 30 }, 31 'path': 'address.location' 32 } 33 } 34 ], 35 'should': [ 36 { 37 'text': { 38 'path': 'property_type', 39 'query': 'Condominium' 40 } 41 } 42 ] 43 } 44 } 45 }, { 46 '$limit': 10 47 }, { 48 '$project': { 49 '_id': 0, 50 'name': 1, 51 'address': 1, 52 'property_type': 1, 53 'score': { 54 '$meta': 'searchScore' 55 } 56 } 57 } 58 ] 59 # run pipeline 60 result = client["sample_airbnb"]["listingsAndReviews"].aggregate(pipeline) 61 62 # print results 63 for i in result: 64 print(i)
Replace the <connection-string>
with your Atlas connection string.
Before you run the sample, replace <connection-string>
with your
Atlas connection string. Ensure that your connection string
includes your database user's credentials. To learn more, see
Connect via Drivers.
Query your collection.
python run-geo-query.py
{ "address": { "country": "United States", "country_code": "US", "government_area": "Primary Urban Center", "location": { "coordinates": [ -157.83919, 21.28634 ], "is_location_exact": true, "type": "Point" }, "market": "Oahu", "street": "Honolulu, HI, United States", "suburb": "O\u02bbahu" }, "name": "Ocean View Waikiki Marina w/prkg", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Lahaina", "location": { "coordinates": [ -156.68012, 20.96996 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Lahaina, HI, United States", "suburb": "Maui" }, "name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Waianae", "location": { "coordinates": [ -158.20291, 21.4818 ], "is_location_exact": true, "type": "Point" }, "market": "Oahu", "street": "Waianae, HI, United States", "suburb": "Leeward Side" }, "name": "Makaha Valley Paradise with OceanView", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.46881, 20.78621 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Maui" }, "name": "March 2019 availability! Oceanview on Sugar Beach!", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "South Hilo", "location": { "coordinates": [ -155.09259, 19.73108 ], "is_location_exact": true, "type": "Point" }, "market": "The Big Island", "street": "Hilo, HI, United States", "suburb": "Island of Hawai\u02bbi" }, "name": "Tropical Jungle Oasis", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Primary Urban Center", "location": { "coordinates": [ -157.82696, 21.27971 ], "is_location_exact": true, "type": "Point" }, "market": "Oahu", "street": "Honolulu, HI, United States", "suburb": "Waikiki" }, "name": "2 Bdrm/2 Bath Family Suite Ocean View", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.5039, 20.79664 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Wailuku, HI, United States", "suburb": "Maui" }, "name": "302 Kanai A Nalu Ocean front/view", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.46697, 20.78484 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Maui" }, "name": "Sugar Beach Resort 1BR Ground Floor Condo !", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.44917, 20.73013 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Kihei/Wailea" }, "name": "2 BR Oceanview - Great Location!", "property_type": "Condominium", "score": 2.238388776779175 } { "address": { "country": "United States", "country_code": "US", "government_area": "Kihei-Makena", "location": { "coordinates": [ -156.4409, 20.69735 ], "is_location_exact": true, "type": "Point" }, "market": "Maui", "street": "Kihei, HI, United States", "suburb": "Maui" }, "name": "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC", "property_type": "Condominium", "score": 2.238388776779175 }