Return the Score Details
On this page
You can use the scoreDetails
boolean option in your
$search
stage for a detailed breakdown of the score for
each document in the query results. To view the metadata, you must use
the $meta expression
in the $project
stage.
Syntax
{ "$search": { "<operator>": { <operator-specification> }, "scoreDetails": true | false } }, { "$project": { "scoreDetails": {"$meta": "searchScoreDetails"} } }
Options
In the $search stage, the scoreDetails
boolean option
takes one of the following values:
true
- to include details of the score for the documents in the results. If set totrue
, Atlas Search returns a detailed breakdown of the score for each document in the result. To learn more, see Output.false
- to exclude details of the score breakdown for the results. (Default)
If omitted, the scoreDetails
option defaults to false
.
In the $project stage, the scoreDetails
field takes
the $meta expression,
which requires the following value:
| Returns a detailed breakdown of the score for each document in the results. |
Output
The scoreDetails
option returns the following fields in the
details
array inside the scoreDetails
object for each document
in the result:
Field | Type | Description |
---|---|---|
| float | Contribution towards the score by a subset of the scoring
formula. The top-level The scoring formula varies based on the operator used in
the query. For example, Atlas Search uses the following scoring formula
for a compound query with text and
near operators: |
| string | Subset of the scoring formula including details about how the
document was scored and factors considered in calculating
the score. The top-level To learn more, see Factors That Contribute to the Score. |
| array of objects | Breakdown of the score for each match in the document based on the subset of the scoring formula. The value is an array of score details objects, recursive in structure. |
Factors That Contribute to the Score
For BM25Similarity
, the score is computed as boost * idf * tf
.
Atlas Search takes into account the following BM25Similarity
factors for
calculating the score:
| Increase the importance of the term. | |
| Frequency of the query term. | |
| Inverse document frequency of the query. Atlas Search computes the frequency using the following formula:
where:
| |
| Term frequency. Atlas Search computes the frequency using the following formula:
where:
|
For distance decay function, the score is computed as pivot / (pivot +
abs(fieldValue - origin))
. Atlas Search takes into account the following
factors for calculating the score:
| Value to search near. This is the origin point from which the proximity of the results are measured. |
| Value of the field that you are querying in the document. The
closer the |
| Value specified as a reference point to make the score equal to
|
Examples
The following examples show how to retrieve the details of the scores in the results for the following:
Queries run using text, near, compound, and embeddedDocument operators.
Queries with scores modified using
function
option expressions.
Tip
To view details of the score recursively in the arrays of objects,
configure the settings in mongosh
by running the following:
config.set('inspectDepth', Infinity)
Operator Examples
The following examples demonstrate how to retrieve a breakdown of the
score using the $search
scoreDetails
option for the
documents in the results for the text, near,
compound, and embeddedDocument operator queries.
The following example uses the text operator to query
the title
field in the sample_mflix.movies
collection for
the term autumn
. The query specifies the scoreDetails
option in the $search
stage to retrieve a detailed
breakdown of the score for each document in the results. The query
uses the $limit
stage to limit the results to three
documents and the $project
stage to do the following:
Exclude the
_id
field.Include only the
title
field.Add the
score
field to the results to return the score of the document and thescoreDetails
field to the results to return a detailed breakdown of the score for the document.
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "autumn" 7 }, 8 "scoreDetails": true 9 } 10 }, 11 { 12 "$limit": 3 13 }, 14 { 15 "$project": { 16 "_id": 0, 17 "title": 1, 18 "score": { "$meta": "searchScore" }, 19 "scoreDetails": { "$meta": "searchScoreDetails" } 20 } 21 } 22 ])
1 [ 2 { 3 title: 'Autumn Leaves', 4 score: 3.834893226623535, 5 scoreDetails: { 6 value: 3.834893226623535, 7 description: '$type:string/title:autumn [BM25Similarity], result of:', 8 details: [ 9 { 10 value: 3.834893226623535, 11 description: 'score(freq=1.0), computed as boost * idf * tf from:', 12 details: [ 13 { 14 value: 7.39188289642334, 15 description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', 16 details: [ 17 { 18 value: 14, 19 description: 'n, number of documents containing term', 20 details: [] 21 }, 22 { 23 value: 23529, 24 description: 'N, total number of documents with field', 25 details: [] 26 } 27 ] 28 }, 29 { 30 value: 0.5187978744506836, 31 description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', 32 details: [ 33 { 34 value: 1, 35 description: 'freq, occurrences of term within document', 36 details: [] 37 }, 38 { 39 value: 1.2000000476837158, 40 description: 'k1, term saturation parameter', 41 details: [] 42 }, 43 { 44 value: 0.75, 45 description: 'b, length normalization parameter', 46 details: [] 47 }, 48 { 49 value: 2, 50 description: 'dl, length of field', 51 details: [] 52 }, 53 { 54 value: 2.868375301361084, 55 description: 'avgdl, average length of field', 56 details: [] 57 } 58 ] 59 } 60 ] 61 } 62 ] 63 } 64 }, 65 { 66 title: 'Late Autumn', 67 score: 3.834893226623535, 68 scoreDetails: { 69 value: 3.834893226623535, 70 description: '$type:string/title:autumn [BM25Similarity], result of:', 71 details: [ 72 { 73 value: 3.834893226623535, 74 description: 'score(freq=1.0), computed as boost * idf * tf from:', 75 details: [ 76 { 77 value: 7.39188289642334, 78 description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', 79 details: [ 80 { 81 value: 14, 82 description: 'n, number of documents containing term', 83 details: [] 84 }, 85 { 86 value: 23529, 87 description: 'N, total number of documents with field', 88 details: [] 89 } 90 ] 91 }, 92 { 93 value: 0.5187978744506836, 94 description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', 95 details: [ 96 { 97 value: 1, 98 description: 'freq, occurrences of term within document', 99 details: [] 100 }, 101 { 102 value: 1.2000000476837158, 103 description: 'k1, term saturation parameter', 104 details: [] 105 }, 106 { 107 value: 0.75, 108 description: 'b, length normalization parameter', 109 details: [] 110 }, 111 { 112 value: 2, 113 description: 'dl, length of field', 114 details: [] 115 }, 116 { 117 value: 2.868375301361084, 118 description: 'avgdl, average length of field', 119 details: [] 120 } 121 ] 122 } 123 ] 124 } 125 ] 126 } 127 }, 128 { 129 title: 'Cheyenne Autumn', 130 score: 3.834893226623535, 131 scoreDetails: { 132 value: 3.834893226623535, 133 description: '$type:string/title:autumn [BM25Similarity], result of:', 134 details: [ 135 { 136 value: 3.834893226623535, 137 description: 'score(freq=1.0), computed as boost * idf * tf from:', 138 details: [ 139 { 140 value: 7.39188289642334, 141 description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', 142 details: [ 143 { 144 value: 14, 145 description: 'n, number of documents containing term', 146 details: [] 147 }, 148 { 149 value: 23529, 150 description: 'N, total number of documents with field', 151 details: [] 152 } 153 ] 154 }, 155 { 156 value: 0.5187978744506836, 157 description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', 158 details: [ 159 { 160 value: 1, 161 description: 'freq, occurrences of term within document', 162 details: [] 163 }, 164 { 165 value: 1.2000000476837158, 166 description: 'k1, term saturation parameter', 167 details: [] 168 }, 169 { 170 value: 0.75, 171 description: 'b, length normalization parameter', 172 details: [] 173 }, 174 { 175 value: 2, 176 description: 'dl, length of field', 177 details: [] 178 }, 179 { 180 value: 2.868375301361084, 181 description: 'avgdl, average length of field', 182 details: [] 183 } 184 ] 185 } 186 ] 187 } 188 ] 189 } 190 } 191 ]
Atlas Search takes into account the following BM25Similarity
factors
for calculating the score:
| Increase the importance of the term. | |
| Frequency of the query term. | |
| Inverse document frequency of the query. Atlas Search computes the frequency using the following formula:
where:
| |
| Term frequency. Atlas Search computes the frequency using the following formula:
where:
|
The following example uses the near operator to query
the released
field in the sample_mflix.movies
collection
for movies released near January 01, 2010. The query specifies the
scoreDetails
option in the $search
stage to
retrieve a detailed breakdown of the score for each document in
the results. The query uses the $limit
stage to limit
the results to three documents and the $project
stage
to do the following:
Exclude the
_id
field.Include only the
title
andreleased
fields.Add the
score
field to the results to return the score of the document and thescoreDetails
field to the results to return a detailed breakdown of the score for the document.
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "near": { 5 "path": "released", 6 "origin": ISODate("2010-01-01T00:00:00.000+00:00"), 7 "pivot": 7776000000 8 }, 9 "scoreDetails": true 10 } 11 }, 12 { 13 "$limit": 3 14 }, 15 { 16 "$project": { 17 "_id": 0, 18 "title": 1, 19 "released": 1, 20 "score": { "$meta": "searchScore" }, 21 "scoreDetails": { "$meta": "searchScoreDetails" } 22 } 23 } 24 ])
1 [ 2 { 3 title: 'Tony', 4 released: ISODate("2010-01-01T00:00:00.000Z"), 5 score: 1, 6 scoreDetails: { 7 value: 1, 8 description: 'Distance score, computed as weight * pivotDistance / (pivotDistance + abs(value - origin)) from:', 9 details: [ 10 { value: 1, description: 'weight', details: [] }, 11 { 12 value: 7776000000, 13 description: 'pivotDistance', 14 details: [] 15 }, 16 { value: 1262303969280, description: 'origin', details: [] }, 17 { 18 value: 1262303969280, 19 description: 'current value', 20 details: [] 21 } 22 ] 23 } 24 }, 25 { 26 title: 'And Everything Is Going Fine', 27 released: ISODate("2010-01-01T00:00:00.000Z"), 28 score: 1, 29 scoreDetails: { 30 value: 1, 31 description: 'Distance score, computed as weight * pivotDistance / (pivotDistance + abs(value - origin)) from:', 32 details: [ 33 { value: 1, description: 'weight', details: [] }, 34 { 35 value: 7776000000, 36 description: 'pivotDistance', 37 details: [] 38 }, 39 { value: 1262303969280, description: 'origin', details: [] }, 40 { 41 value: 1262303969280, 42 description: 'current value', 43 details: [] 44 } 45 ] 46 } 47 }, 48 { 49 title: 'A Film with Me in It', 50 released: ISODate("2010-01-01T00:00:00.000Z") 51 score: 1, 52 scoreDetails: { 53 value: 1, 54 description: 'Distance score, computed as weight * pivotDistance / (pivotDistance + abs(value - origin)) from:', 55 details: [ 56 { value: 1, description: 'weight', details: [] }, 57 { 58 value: 7776000000, 59 description: 'pivotDistance', 60 details: [] 61 }, 62 { value: 1262303969280, description: 'origin', details: [] }, 63 { 64 value: 1262303969280, 65 description: 'current value', 66 details: [] 67 } 68 ] 69 } 70 } 71 ]
For distance score, Atlas Search takes into account the following factors for calculating the score:
| Value to search near. This is the origin point from which the proximity of the results are measured. |
| Value of the field that you are querying in the document. The
closer the |
| Value specified as a reference point to make the score equal to
|
The following example uses the compound operator to
query the sample_mflix.movies
collection for movies using the
following clauses:
filter
clause to find movies that contain the termfriend
in the title.must
clause to find movies released between the years2000
and2015
.mustNot
clause to find movies that are not in theShort
,Western
, andBiography
genres.
The query specifies the scoreDetails
option in the
$search
stage to retrieve a detailed breakdown of the
score for each document in the results. The query uses the
$limit
stage to limit the results to three documents
and the $project
stage to do the following:
Exclude the
_id
field.Include only the
title
,released
, andgenres
fields.Add the
score
field to the results to return the score of the document and thescoreDetails
field to the results to return a detailed breakdown of the score for the document.
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "compound": { 5 "filter": [{ 6 "text": { 7 "query": "friend", 8 "path": "title" 9 } 10 }], 11 "must": [{ 12 "range": { 13 "path": "year", 14 "gte": 2000, 15 "lte": 2015 16 } 17 }], 18 "mustNot": [{ 19 "text": { 20 "query": ["Short, Western", "Biography"], 21 "path": "genres" 22 } 23 }] 24 }, 25 "scoreDetails": true 26 } 27 }, 28 { 29 "$limit": 3 30 }, 31 { 32 "$project": { 33 "_id": 0, 34 "title": 1, 35 "released": 1, 36 "genres": 1, 37 "score": { "$meta": "searchScore" }, 38 "scoreDetails": { "$meta": "searchScoreDetails" } 39 } 40 } 41 ])
1 [ 2 { 3 genres: [ 'Comedy', 'Drama', 'Mystery' ], 4 title: 'With a Friend Like Harry...', 5 released: ISODate("2001-06-15T00:00:00.000Z"), 6 score: 1, 7 scoreDetails: { 8 value: 1, 9 description: 'sum of:', 10 details: [ 11 { 12 value: 0, 13 description: 'match on required clause, product of:', 14 details: [ 15 { value: 0, description: '# clause', details: [] }, 16 { 17 value: 1, 18 description: '$type:string/title:friend', 19 details: [] 20 } 21 ] 22 }, 23 { 24 value: 1, 25 description: 'sum of:', 26 details: [ 27 { 28 value: 1, 29 description: 'sum of:', 30 details: [ 31 { 32 value: 1, 33 description: '$type:double/year:[4656510908468559872 TO 4656576879166226432]', 34 details: [] 35 } 36 ] 37 } 38 ] 39 } 40 ] 41 } 42 }, 43 { 44 genres: [ 'Drama' ], 45 title: 'My Friend Henry', 46 released: ISODate("2004-08-20T00:00:00.000Z"), 47 score: 1, 48 scoreDetails: { 49 value: 1, 50 description: 'sum of:', 51 details: [ 52 { 53 value: 0, 54 description: 'match on required clause, product of:', 55 details: [ 56 { value: 0, description: '# clause', details: [] }, 57 { 58 value: 1, 59 description: '$type:string/title:friend', 60 details: [] 61 } 62 ] 63 }, 64 { 65 value: 1, 66 description: 'sum of:', 67 details: [ 68 { 69 value: 1, 70 description: 'sum of:', 71 details: [ 72 { 73 value: 1, 74 description: '$type:double/year:[4656510908468559872 TO 4656576879166226432]', 75 details: [] 76 } 77 ] 78 } 79 ] 80 } 81 ] 82 } 83 }, 84 { 85 genres: [ 'Comedy', 'Drama' ], 86 title: 'A Friend of Mine', 87 released: ISODate("2006-10-26T00:00:00.000Z"), 88 score: 1, 89 scoreDetails: { 90 value: 1, 91 description: 'sum of:', 92 details: [ 93 { 94 value: 0, 95 description: 'match on required clause, product of:', 96 details: [ 97 { value: 0, description: '# clause', details: [] }, 98 { 99 value: 1, 100 description: '$type:string/title:friend', 101 details: [] 102 } 103 ] 104 }, 105 { 106 value: 1, 107 description: 'sum of:', 108 details: [ 109 { 110 value: 1, 111 description: 'sum of:', 112 details: [ 113 { 114 value: 1, 115 description: '$type:double/year:[4656510908468559872 TO 4656576879166226432]', 116 details: [] 117 } 118 ] 119 } 120 ] 121 } 122 ] 123 } 124 } 125 ]
Note
The # clause
in the results on lines 15, 56, and 97
represent the compound query filter
clause,
which doesn't contribute to the score of the document.
The following example uses the embeddedDocument
operator to query the products.name
field in the
sample_training.companies
collection for products that contain
the term Basic
preceded by any number of other characters. The
query specifies inside the embeddedDocument
operator that the
returned score must be a sum of all the matching embedded
documents. The query also specifies the scoreDetails
option in
the $search
stage to retrieve a detailed breakdown of
the score for each document in the results. The query uses the
$limit
stage to limit the results to three documents
and the $project
stage to do the following:
Exclude the
_id
field.Include only the
products.name
field.Add the
score
field to the results to return the score of the document and thescoreDetails
field to the results to return a detailed breakdown of the score for the document.
1 db.companies.aggregate({ 2 "$search": { 3 "embeddedDocument": { 4 "path": "products", 5 "operator": { 6 "wildcard": { 7 "path": "products.name", 8 "query": "*Basic", 9 "allowAnalyzedField": true 10 } 11 }, 12 "score": { 13 "embedded": { 14 "aggregate": "sum" 15 } 16 } 17 }, 18 "scoreDetails": true 19 } 20 }, 21 { 22 "$limit": 3 23 }, 24 { 25 "$project": { 26 "_id": 0, 27 "name": 1, 28 "products.name": 1, 29 "score": { "$meta": "searchScore" }, 30 "scoreDetails": { "$meta": "searchScoreDetails" } 31 } 32 })
1 [ 2 { 3 name: 'Plaxo', 4 products: [ 5 { name: 'Plaxo Basic' }, 6 { name: 'Plaxo Pulse' }, 7 { name: 'Plaxo Personal Assistant' } 8 ], 9 score: 1, 10 scoreDetails: { 11 value: 1, 12 description: 'Score based on 1 child docs in range from 27 to 29, best match:', 13 details: [ 14 { 15 value: 1, 16 description: '$embedded:8/products/$type:string/products.name:*Basic', 17 details: [] 18 } 19 ] 20 } 21 }, 22 { 23 name: 'The Game Creators', 24 products: [ 25 { name: 'Dark Basic Professional' }, 26 { name: 'FPS Creator' }, 27 { name: 'FPS Creator X10' } 28 ], 29 score: 1, 30 scoreDetails: { 31 value: 1, 32 description: 'Score based on 1 child docs in range from 7474 to 7476, best match:', 33 details: [ 34 { 35 value: 1, 36 description: '$embedded:8/products/$type:string/products.name:*basic', 37 details: [] 38 } 39 ] 40 } 41 }, 42 { 43 name: 'Load Impact', 44 products: [ 45 { name: 'Load Impact LIGHT' }, 46 { name: 'Load Impact BASIC' }, 47 { name: 'Load Impact PROFESSIONAL' }, 48 { name: 'Load Impact ADVANCED' } 49 ], 50 score: 1, 51 scoreDetails: { 52 value: 1, 53 description: 'Score based on 1 child docs in range from 11545 to 11548, best match:', 54 details: [ 55 { 56 value: 1, 57 description: '$embedded:8/products/$type:string/products.name:*basic', 58 details: [] 59 } 60 ] 61 } 62 } 63 ]
Note
For scores based on child documents in range, the numbers in
the range represent the IDs of parent and child documents
indexed by Lucene under the hood. The description
in the
child documents (on lines 16, 36, and 57) show an internal
representation of a path.
Custom Score Examples
The following examples demonstrate how to retrieve a breakdown of the
score using the $search
scoreDetails
option for the
documents in the results for the function expression example queries against the sample_mflix.movies
collection.
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "multiply":[ 9 { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 2 13 } 14 }, 15 { 16 "score": "relevance" 17 } 18 ] 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 $limit: 5 27 }, 28 { 29 $project: { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 }])
[ { title: 'Men...', score: 23.431293487548828, scoreDetails: { value: 23.431293487548828, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 23.431293487548828, description: '(imdb.rating * scores)', details: [] } ] } }, { title: '12 Angry Men', score: 22.080968856811523, scoreDetails: { value: 22.080968856811523, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 22.080968856811523, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'Matchstick Men', score: 21.05954933166504, scoreDetails: { value: 21.05954933166504, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.05954933166504, description: '(imdb.rating * scores)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "men", 7 "score": { 8 "function":{ 9 "constant": 3 10 } 11 } 12 }, 13 "scoreDetails": true 14 } 15 }, 16 { 17 $limit: 5 18 }, 19 { 20 $project: { 21 "_id": 0, 22 "title": 1, 23 "score": { "$meta": "searchScore" }, 24 "scoreDetails": {"$meta": "searchScoreDetails"} 25 } 26 } 27 ])
[ { title: 'Men Without Women', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'One Hundred Men and a Girl', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'Of Mice and Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: "All the King's Men", score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'The Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "shop", 7 "score": { 8 "function":{ 9 "gauss": { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 4.6 13 }, 14 "origin": 9.5, 15 "scale": 5, 16 "offset": 0, 17 "decay": 0.5 18 } 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 "$limit": 10 27 }, 28 { 29 "$project": { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 } 36 ])
[ { title: 'The Shop Around the Corner', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Exit Through the Gift Shop', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Shop on Main Street', score: 0.9395227432250977, scoreDetails: { value: 0.9395227432250977, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9395227432250977, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Chop Shop', score: 0.8849083781242371, scoreDetails: { value: 0.8849083781242371, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8849083781242371, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Little Shop of Horrors', score: 0.8290896415710449, scoreDetails: { value: 0.8290896415710449, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8290896415710449, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Suicide Shop', score: 0.7257778644561768, scoreDetails: { value: 0.7257778644561768, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.7257778644561768, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'A Woman, a Gun and a Noodle Shop', score: 0.6559237241744995, scoreDetails: { value: 0.6559237241744995, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6559237241744995, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Beauty Shop', score: 0.6274620294570923, scoreDetails: { value: 0.6274620294570923, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6274620294570923, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "path": { 9 "value": "imdb.rating", 10 "undefined": 4.6 11 } 12 } 13 } 14 }, 15 "scoreDetails": true 16 } 17 }, 18 { 19 $limit: 5 20 }, 21 { 22 $project: { 23 "_id": 0, 24 "title": 1, 25 "score": { "$meta": "searchScore" }, 26 "scoreDetails": {"$meta": "searchScoreDetails"} 27 } 28 }])
[ { title: '12 Angry Men', score: 8.899999618530273, scoreDetails: { value: 8.899999618530273, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.899999618530273, description: 'imdb.rating', details: [] } ] } }, { title: 'The Men Who Built America', score: 8.600000381469727, scoreDetails: { value: 8.600000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.600000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'No Country for Old Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'The Best of Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "score": "relevance" 9 } 10 } 11 }, 12 "scoreDetails": true 13 } 14 }, 15 { 16 $limit: 5 17 }, 18 { 19 $project: { 20 "_id": 0, 21 "title": 1, 22 "score": { "$meta": "searchScore" }, 23 "scoreDetails": {"$meta": "searchScoreDetails"} 24 } 25 }])
[ { title: 'Men...', score: 3.4457783699035645, scoreDetails: { value: 3.4457783699035645, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'weight($type:string/title:men in 4705) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.6196683645248413, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 1, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'The Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 870) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Simple Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 6371) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'X-Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8368) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Mystery Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8601) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function": { 8 "log": { 9 "path": { 10 "value": "imdb.rating", 11 "undefined": 10 12 } 13 } 14 } 15 } 16 }, 17 "scoreDetails": true 18 } 19 }, 20 { 21 $limit: 5 22 }, 23 { 24 $project: { 25 "_id": 0, 26 "title": 1, 27 "score": { "$meta": "searchScore" }, 28 "scoreDetails": {"$meta": "searchScoreDetails"} 29 } 30 }])
[ { title: '12 Angry Men', score: 0.9493899941444397, scoreDetails: { value: 0.9493899941444397, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9493899941444397, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Men Who Built America', score: 0.9344984292984009, scoreDetails: { value: 0.9344984292984009, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9344984292984009, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'No Country for Old Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Best of Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } } ]