GenAI

122 results

Building Gen AI with MongoDB & AI Partners | January 2025

Even for those of us who work in technology, it can be hard to keep track of the awards companies give and receive throughout the year. For example, in the past few months MongoDB has announced both our own awards (such as the William Zola Award for Community Excellence ) and awards the company has received—like the AWS Technology Partner of the Year NAMER and two awards from RepVue. And that’s just us! It can be a lot! But as hard as they can be to follow, industry awards—and the recognition, thanks, and collaboration they represent—are important. They highlight the power and importance of working together and show how companies like MongoDB and partners are committed to building best-in-class solutions for customers. So without further ado, I’m pleased to announce that MongoDB has been named Technology Partner of the Year in Confluent’s 2025 Global Partner Awards ! As a member of the MongoDB AI Applications Program (MAAP) ecosystem, Confluent enables businesses to build a trusted, real-time data foundation for generative AI applications through seamless integration with MongoDB and Atlas Vector Search. Above all, this award is a testament to MongoDB and Confluent’s shared vision: to help enterprises unlock the full potential of real-time data and AI. Here’s to what’s next! Welcoming new AI and tech partners It's been an action-packed start to the year: in January 2025, we welcomed six new AI and tech partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! Base64 Base64 is an all-in-one solution to bring AI into document-based workflows, enabling complex document processing, workflow automation, AI agents, and data intelligence. “MongoDB provides a fantastic platform for storing and querying all kinds of data, but getting unstructured information like documents into a structured format can be a real challenge. That's where Base64 comes in. We're the perfect onramp, using AI to quickly and accurately extract the key data from documents and feed it right into MongoDB,” said Chris Huff, CEO of Base64. “ This partnership makes it easier than ever for businesses to unlock the value hidden in their documents and leverage the full power of MongoDB." Dataloop Dataloop is a platform that allows developers to build and orchestrate unstructured data pipelines and develop AI solutions faster. " We’re thrilled to join forces with MongoDB to empower companies in building multimodal AI agents”, said Nir Buschi, CBO and co-founder of Dataloop. “Our collaboration enables AI developers to combine Dataloop’s data-centric AI orchestration with MongoDB’s scalable database. Enterprises can seamlessly manage and process unstructured data, enabling smarter and faster deployment of AI agents. This partnership accelerates time to market and helps companies get real value to customers faster." Maxim AI Maxim AI is an end-to-end AI simulation and evaluation platform, helping teams ship their AI agents reliably and more than 5x faster. “ We're excited to collaborate with MongoDB to empower developers in building reliable, scalable AI agents faster than ever,” said Vaibhavi Gangwar, CEO of Maxim AI. “By combining MongoDB’s robust vector database capabilities with Maxim’s comprehensive GenAI simulation, evaluation, and observability suite, this partnership enables teams to create high-performing retrieval-augmented generation (RAG) applications and deliver outstanding value to their customers.” Mirror Security Mirror Security offers a comprehensive AI security platform that provides advanced threat detection, security policy management, continuous monitoring ensuring compliance and protection for enterprises. “ We're excited to partner with MongoDB to redefine security standards for enterprise AI deployment,” said Dr. Aditya Narayana, Chief Research Officer, at Mirror Security. “By combining MongoDB's scalable infrastructure with Mirror Security's end-to-end vector encryption, we're making it simple for organizations to launch secure RAG pipelines and trusted AI agents. Our collaboration eliminates security-performance trade-offs, empowering enterprises in regulated industries to confidently accelerate their AI initiatives while maintaining the highest security standards.” Squid AI Squid AI is a full-featured platform for creating private AI agents in a faster, secure, and automated way. “As an AI agent platform that securely connects to MongoDB in minutes, we're looking forward to helping MongoDB customers reveal insights, take action on their data, and build enterprise AI agents,” said Leslie Lee, Head of Product at Squid AI. “ By pairing Squid's semantic RAG and AI functions with MongoDB's exceptional performance , developers can build powerful AI agents that respond to new inputs in real-time.” TrojAI TrojAI is an AI security platform that protects AI models and applications from new and evolving threats before they impact businesses. “ TrojAI is thrilled to join forces with MongoDB to help companies secure their RAG-based AI apps built on MongoDB,” said Lee Weiner, CEO of TrojAI. “We know how important MongoDB is to helping enterprises adopt and harness AI. Our collaboration enables enterprises to add a layer of security to their database initialization and RAG workflows to help protect against the evolving GenAI threat landscape.” But what, there’s more! In February, we’ve got two webinars coming up with MAAP partners that you don’t want to miss: Build a JavaScript AI Agent With MongoDB and LangGraph.js : Join MongoDB Staff Developer Advocate Jesse Hall and LangChain Founding Software Engineer Jacob Lee for an exclusive webinar that highlights the integration of LangGraph.js, LangChain’s cutting-edge JavaScript library, and MongoDB - live on Feb 25 . Architecting the Future: RAG and Al Agents for Enterprise Transformation : Join MongoDB, LlamaIndex, and Together AI to explore how to strategically build a tech stack that supports the development of enterprise-grade RAG and AI agentic systems, explore technical foundations and practical applications, and learn how the MongoDB Applications Program (MAAP) will enable you to rapidly innovate with AI - content on demand . To learn more about building AI-powered apps with MongoDB, check out our AI Learning Hub and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem.

February 11, 2025

Automate Network Management Using Gen AI Ops with MongoDB

Imagine that it’s a typical Tuesday afternoon and that you’re the operations manager for a major North American telecommunications company. Suddenly, your Network Operations Center (NOC) receives an alert that web traffic in Toronto has surged by hundreds of percentage points over the last hour—far above its usual baseline. At nearly the same moment, a major Toronto-based client complains that their video streams have been buffering nonstop. Just a few years ago, a scenario like this would trigger a frantic scramble: teams digging into logs, manually writing queries, and attempting to correlate thousands of lines of data in different formats to find a single root cause. Today, there’s a more streamlined, AI-driven approach. By combining MongoDB’s developer data platform with large language models (LLMs) and a retrieval-augmented generation (RAG) architecture, you can move from reactive “firefighting” to proactive, data-informed diagnostics. Instead of juggling multiple monitoring dashboards or writing complicated queries by hand, you can simply ask for insights—and the system retrieves and analyzes the necessary data automatically. Facing the unexpected traffic spike Now let’s imagine the same situation, but this time with AI-assisted network management. Shortly after you spot a traffic surge in Toronto, your NOC chatbot pings you with a situation report: requests from one neighborhood are skyrocketing, and an unusually high percentage involve video streaming paths or caching servers. Under the hood, MongoDB automatically ingests every log entry and telemetry event in real time—capturing IP addresses, geographic data, request paths, timestamps, router logs, and sensor data. Meanwhile, textual content (such as error messages, user complaints, and chat transcripts) is vectorized and stored in MongoDB for semantic search. This setup enables near-instant access to relevant information whenever a keyword like “buffering,” “video streams,” or “streaming lag” is mentioned, ensuring a fast, end-to-end diagnosis. Refer to this article to learn more about semantic search. Zeroing in on the root cause Instead of rummaging through separate logging tools, you pose a simple natural-language question to the system: “What might be causing the client’s video stream buffering problem in Toronto?” The LLM responds by generating a custom MongoDB Aggregation Pipeline —written in Python code—tailored to your query. It might look something like this: a $match stage to filter for the last twenty-four hours of data in Toronto, a $group stage to roll up metrics by streaming services, and a $sort stage to find the largest error counts. The code is automatically served back to you, and with a quick confirmation, you execute it on your MongoDB cluster. A moment later, the chatbot returns with a summarized explanation that points to an overloaded local CDN node, along with higher-than-expected requests from older routers known to misbehave under peak load. Next, you ask the system to explain the core issue in simpler terms so you can share it with a business stakeholder. The LLM takes the numeric results from the Aggregation Pipeline, merges them with textual logs that mention “firmware out-of-date,” and then outputs a cohesive explanation. It even suggests that many of these older routers are still running last year’s firmware release—a known contributor to buffering issues on video streams during traffic spikes. How retrieval-augmented generation (RAG) helps The power behind this effortless insight is a RAG architecture, which marries semantic search with generative text responses. First, the LLM uses vector search in MongoDB to retrieve only those log entries, complaint records, and knowledge base articles that directly relate to streaming. Once it has these key data chunks, the LLM can generate—and continually refine—its analysis. Figure 1. Network chatbot architecture with MongoDB. When the system references historical data to confirm that “similar spikes occurred during the playoffs last year” or that “users with older firmware frequently complain about buffering,” it’s not blindly guessing. Instead, it’s accessing domain-specific logs, user feedback, and diagnostic documents stored in MongoDB, and then weaving them together into a coherent explanation. This eliminates guesswork and slashes the time your team would otherwise spend on low-level data cleanup, correlation, and interpretation. Executing automated remediation Armed with these insights, your team can roll out a targeted fix, possibly involving an auto-update to the affected routers or load-balancing traffic to alternative CDN endpoints. MongoDB’s Change Streams can monitor for future anomalies. If a traffic spike starts to look suspiciously similar to the scenario you just solved, the system can raise a proactive alert or even initiate the fix automatically. Refer to the official documentation to learn more about the change streams. Meanwhile, the cost savings add up. You no longer need engineers manually piecing data together, nor do you endure prolonged user dissatisfaction while you try to figure out what’s happening. Everything from anomaly detection to root-cause analysis and recommended mitigation steps is fed through a single pipeline—visible and explainable in plain language. A future of AI-driven operations This scenario highlights how (gen) AI Ops and MongoDB complement each other to transform network management: Schema flexibility: MongoDB’s document-based model effortlessly stores logs, performance metrics, and user feedback in a single, consistent environment. Real-time performance: With horizontal scaling, you can ingest the massive volumes of data generated by network logs and user requests at any hour of the day. Vector search integration: By embedding textual data (such as logs, user complaints, or FAQs) and storing those vectors in MongoDB, you enable instant retrieval of semantically relevant content—making it easy for an LLM to find exactly what it needs. Aggregation + LLM: An LLM can auto-generate MongoDB Aggregation Pipelines to sift through numeric data with ease, while a second pass to the LLM composes a final summary that merges both numeric and textual analysis. Once you see how much time and effort this end-to-end workflow saves, you can extend it across the entire organization. Whether it’s analyzing sudden traffic spikes in specific geographies, diagnosing a security event, or handling peak online shopping loads during a holiday sale, the concept remains the same: empower people to ask natural-language questions about complex data, rely on AI to craft the specialized queries behind the scenes, and store it all in a platform that can handle unbounded complexity. Ready to embrace gen AI ops with MongoDB? Network disruptions will never fully disappear, but how quickly and intelligently you respond can be a game-changer. By uniting MongoDB with LLM-based AI and a retrieval-augmented generation (RAG) strategy, you transform your network operations from a tangle of logs and dashboards into a conversational, automated, and deeply informed system. Sign up for MongoDB Atlas to start building your own RAG-based workflows. With intelligent vector search, automated pipeline generation, and natural-language insight, you’ll be ready to tackle everything from video streams buffering complaints to the next unexpected traffic surge—before users realize there’s a problem. If you would like to learn more about how to build gen AI applications with MongoDB, visit the following resources: Learn more about MongoDB capabilities for artificial intelligence on our product page. Get started with MongoDB Vector Search by visiting our product page. Blog: Leveraging an Operational Data Layer for Telco Success Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads? ” presented by MongoDB Field CTO, Rick Houlihan.

February 5, 2025

Building Gen AI with MongoDB & AI Partners | December 2024

Now that 2024 is behind us, we can see clearly how much change, innovation, and progress there was across the AI landscape in 2024. For MongoDB, the year was particularly marked by collaboration with our AI partners, and by the possibilities that AI collaboration holds; as the saying goes, it takes a village. From the release of breakthrough tools and frameworks, to AI-enriched workflows (for both prototyping and production), together we empowered customers and developers alike to build cutting-edge AI applications. To help you prepare for the rest of 2025, below is a selection of content developed by MongoDB’s Developer Relations team. This work will equip you with the knowledge (and tools!) from MongoDB and our AI partners to create the hottest AI applications in the new year. Building an Agent with Fireworks.AI, MongoDB, and LangChain Learn how to create an intelligent agent that combines Fireworks AI’s advanced capabilities, LangChain’s framework, and MongoDB's robust database. This guide walks you through developing an agent capable of reasoning and decision-making with structured and unstructured data. Claude 3.5 and MongoDB: Revolutionizing Retrieval-Augmented Generation Learn how Anthropic's Claude 3.5 integrates with MongoDB to enhance retrieval-augmented generation (RAG) pipelines. This post demonstrates using Claude for contextual and nuanced text generation while leveraging MongoDB Atlas for efficient data retrieval. Build an AI Agent with LangGraph.js and MongoDB Atlas Explore how LangGraph.js simplifies AI agent development for JavaScript and TypeScript developers. This tutorial showcases building an AI-powered agent and managing data with MongoDB Atlas for seamless functionality and scalability. Ingesting Quantized Vectors with Cohere and MongoDB Discover how to leverage Cohere’s quantized vector representations and MongoDB Atlas for efficient vector storage and retrieval. This guide demonstrates workflows for building scalable, high-performance applications that use vector embeddings for AI-driven solutions. And if you’d like to dig into building with MongoDB and gen AI, explore our GenAI Showcase repository on GitHub for a wide range of sample projects, tools, and inspiration to kickstart your AI journey into 2025! Happy New Year—and happy building! Welcoming new AI and tech partners In December 2024, we welcomed six new AI and tech partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! Apigene Apigene enables users to operate all software applications through a single AI assistant, providing complete control of popular services and platforms. " We're excited to partner with MongoDB to bring natural language capabilities to Atlas users, transforming how teams interact with their data”, said Michal Geva, VP of Business of Apigene. “This collaboration makes database operations as intuitive as having conversations, empowering businesses to unlock Atlas’s full potential without complexity." Bauplan Bauplan is a programmable data lake where users can load, transform, query, run, schedule, and replay all from their code, driving superior cost-efficiency and less management from data teams. “ We're pretty darn excited about partnering up with MongoDB because the combination of Bauplan and MongoDB Atlas makes it so incredibly easy to build full-stack AI applications”, said Ciro Greco, CEO and founder of Bauplan. “One can build powerful applications like embedded analytics, feature stores, recommender systems, and RAG based search in a simple Python script. Zero infrastructure overhead, compute is purely serverless and everything's version controlled in the data lake by default.” Botnoi BOTNOI Group offers innovative AI technologies that enhance business operations such as a conversational AI chatbot for enterprise, speech-to-text, text-to-speech, and computer vision. " We’re excited to announce our partnership with MongoDB ”, said Piyoros Tungthamthiti, CTO of BOTNOI Group. “By integrating MongoDB Atlas, we’re enhancing Botnoi’s capabilities to deliver top-tier conversational AI performance. This collaboration will enable seamless data management, advanced analytics, and reliable system performance, ultimately providing greater value to our clients." Jiva.ai Jiva.ai is a zero-code platform for rapid multimodal AI development using structured and unstructured data. " We are thrilled to join MongoDB's ecosystem and bring our no-code AI platform together with their powerful vector search and multimodal data capabilities,” said Dr. Manish Patel, CEO of Jiva.ai. “MongoDB enables us to help businesses rapidly transform complex data into intelligent solutions, democratizing AI development across industries. By combining Jiva.ai's patented model fusion technology with MongoDB's flexible document model, we're accelerating enterprise AI adoption and helping organizations unlock unprecedented insights from their data." mple.ai mple.ai is an AI-powered sales training platform for enterprises, designed to deliver scalable, measurable, and impactful training through role-plays and AI-driven evaluations. " Our collaboration with MongoDB is redefining AI-driven team training”, said Riddhesh Ganatra, Co-Founder of mple.ai. “With MongoDB's reliable and scalable data solutions, we're delivering real-world scenario-based coaching to help organizations achieve faster, more impactful results." TrueFoundry TrueFoundry is a Kubernetes-based platform designed to simplify the process of building, deploying and scaling compound AI systems across any cloud or on-premise infrastructure. “ We’re thrilled to partner with MongoDB to accelerate the development of compound AI applications”, said Nikunj Bajaj, CEO of TrueFoundry. “With TrueFoundry’s powerful accelerators, including AI Gateway, Model Deployment & Finetuning, and RAG Framework, combined with MongoDB’s scalable vector database, enterprises can quickly build, deploy, and scale production-grade AI solutions. TrueFoundry’s platform ensures robust governance, cost optimization, and faster time to value, empowering enterprises to innovate efficiently and at scale.” But wait, there's more! To learn more about building AI-powered apps with MongoDB, check out our AI Resources Hub and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem.

January 16, 2025

Building a Unified Data Platform for Gen AI

In today’s digital-first world, data is the lifeblood of innovation and decision-making. Yet, businesses often find themselves constrained by outdated and fragmented systems that fail to meet the demands of a fast-paced, interconnected landscape. Legacy architectures—such as the 1970s-era mainframes still used in industries like banking—create inefficiencies, siloed data, and operational bottlenecks, leaving organizations struggling to deliver timely, actionable insights. The pressure to adapt is mounting, as customer expectations for real-time interactions and personalized services continue to grow. To thrive in this competitive environment, organizations must embrace a transformative approach to managing their data estates—one that integrates advanced technologies seamlessly. Check out our AI Learning Hub to learn more about building AI-powered apps with MongoDB. Unified data platforms powered by operational data layers (ODLs), generative AI (gen AI), and vector search are the solution. These innovations do more than just modernize data handling; they unlock new opportunities for agility, efficiency, and value creation, empowering businesses to make informed decisions, improve customer experiences, and drive growth. Let’s explore how these technologies are reshaping the way businesses consume, integrate, and leverage their data. Figure 1. Conceptual model of a Converged AI Data Store, showing multimodal data ingest. From stale to real-time data: The case for operational data layers In the rapidly evolving digital landscape, businesses can no longer afford to rely on outdated, batch-processed data. The demands of modern operations require instant access to fresh, accurate information. Yet many organizations continue to struggle with fragmented systems that deliver stale data, creating roadblocks in decision-making and customer engagement. This is where the concept of an ODL becomes transformative. Acting as a centralized hub, an ODL integrates data from multiple transactional systems in real-time, ensuring businesses have a unified and up-to-date view of their operations. Let’s explore how ODLs can revolutionize business processes: 1. Enabling real-time customer interactions Imagine a customer service representative handling a support call. Without real-time access to the latest data—such as a customer’s recent transactions, support history, or preferences—the interaction may feel disconnected and inefficient. An ODL solves this problem by consolidating and providing real-time data. For example, a telecom provider could use an ODL to ensure its agents have immediate access to recent billing information, technical issues reported, and ongoing resolutions. This not only empowers the agents but also leaves the customer with a seamless and satisfactory experience. 2. Streamlining account management Real-time data isn’t just about resolving customer issues; it’s also critical for proactive engagement. In industries like banking and retail, customers often need immediate updates on their accounts, such as current balances, transaction details, or loyalty points. By integrating APIs with the ODL, businesses can offer instantaneous responses to these queries. For instance, a retail bank could enable customers to check recent purchases or transfers through a chatbot that queries the ODL in real-time, delivering fast, accurate results. 3. Enhancing compliance and reporting Highly regulated industries, such as finance and healthcare, face additional challenges in managing large volumes of historical data for audits and compliance. Traditional systems often struggle to handle such demands, resulting in time-consuming manual processes. ODLs, when combined with gen AI, enable businesses to extract, summarize, and structure this data efficiently. For instance, a financial institution could use an ODL to generate compliance reports that pull data from diverse sources—both structured and unstructured—and ensure they meet regulatory standards with minimal manual intervention. 4. Supporting metadata and governance Another often overlooked advantage of an ODL is its ability to support metadata management and data governance. For large enterprises operating across multiple geographies, changes in localized data models are frequent and complex. An ODL can act as a centralized repository, capturing these updates and enabling advanced search functionalities for impact analysis. For example, a global enterprise could use an ODL to track changes in data definitions, understand usage patterns, and ensure compliance with governance policies across regions—all while reducing the risk of errors. The transformative power of gen AI and vector search As businesses transition to real-time data strategies powered by ODLs, the potential to unlock even greater insights lies in adopting cutting-edge tools like gen AI and vector search. These technologies are revolutionizing the way organizations consume and interpret data, enabling unprecedented efficiency and intelligence. Gen AI: By generating actionable insights, predictions, and content, gen AI enables businesses to turn static data into a strategic resource. For example, a retailer could use gen AI to analyze customer purchase histories and recommend personalized product bundles. Vector search: This technology translates high-dimensional data like text, images, and audio into vectors, enabling accurate, intuitive searches. For instance, healthcare providers can search for similar patient cases by symptoms, enhancing diagnostics and treatment planning. By incorporating these tools into an ODL, businesses can go beyond basic data integration, creating smarter, more agile operations capable of delivering value in real-time. Figure 2. Retrieval Augmented Generation (RAG) implementation, using the converged AI data store to provide context to the LLM prompt. New opportunities: Revolutionizing operations with gen AI and operational data layers The integration of gen AI and vector search into ODLs opens up a world of opportunities for businesses to enhance customer experience, streamline operations, and innovate at scale. Here’s how these technologies drive transformation: Enhanced data discovery: With vector search, organizations can quickly and accurately retrieve relevant data from massive datasets, simplifying complex searches. Improved customer experience: Gen AI–powered ODLs analyze customer behavior to deliver personalized recommendations, building stronger customer relationships. Increased operational efficiency: Automating routine data tasks with gen AI reduces manual effort, enabling teams to focus on strategic initiatives. Enhanced agility and innovation: By enabling rapid development of AI-driven applications, businesses can quickly adapt to market changes and stay ahead of the competition. As organizations embrace these capabilities, they position themselves to thrive in an increasingly competitive and data-driven world. Architectural options for data processing Modernizing data platforms requires a robust architecture that can handle both batch and real-time processing. Depending on their needs, organizations often choose between lambda or kappa architectures, and MongoDB can serve as a flexible operational layer for both. The lambda architecture The lambda architecture is ideal for organizations that need to process both batch and real-time data. It consists of three layers: Batch layer: This layer processes large volumes of historical data offline. Gen AI can enrich this data by generating insights and predictions. Speed layer: This layer handles real-time data streams, enabling immediate responses to changes. Serving layer: This layer combines batch and real-time data into a unified view, powered by MongoDB for seamless queries and data access. The kappa architecture For businesses focused on real-time analytics, the kappa architecture simplifies operations by using a single stream for data processing. MongoDB excels as the operational speed layer in this setup, supporting high-speed, real-time data updates enhanced by gen AI. By choosing the right architecture and leveraging MongoDB’s capabilities, businesses can ensure their data platforms are future ready. A journey toward data modernization Data modernization is a progressive journey, transforming businesses step by step into smarter, more agile systems. It begins with a basic operational data store , where read-heavy workloads are offloaded from legacy systems into MongoDB, boosting performance and accessibility. Next comes the enriched ODL , adding real-time analytics to turn raw data into actionable insights. Then, as needs grow, parallel writes enable MongoDB to handle write-heavy operations, enhancing speed and reliability. In the transition to the system of transaction , monolithic systems are replaced with agile microservices directly connected to MongoDB, simplifying operations and accelerating innovation. Finally, businesses reach the system of record , a domain-driven architecture where MongoDB provides unmatched scalability, flexibility, and efficiency. Each phase of this journey unlocks new opportunities, transforming data into a dynamic asset that powers innovation, operational excellence, and growth. Figure 3. A conceptual model showcasing the joint implementation of the Kappa (Data in Motion) and Lambda (Data at Rest) frameworks on MongoDB Atlas, utilizing Stream Processing for real-time data and Online Archive/Federation features for historical data management. The unified and intelligent future of data As businesses embrace real-time data architectures and advanced AI capabilities, the potential for innovation is boundless. With solutions like MongoDB, organizations can seamlessly integrate and harness their data, driving operational excellence and delivering exceptional customer experiences. Now is the time to modernize, innovate, and unlock the full potential of your data. Discover how TCS and MongoDB are harmonizing technologies for the future. Start your data modernization journey today! Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads ? ” presented by MongoDB Field CTO, Rick Houlihan.

January 15, 2025

AI-Powered Retail With Together AI and MongoDB

Generative AI (gen AI) is changing retail in fascinating ways. It’s providing new avenues for IT leaders at retailers to enhance customer experiences, streamline operations, and grow revenue in a fast-paced environment. Recently, we’ve been working closely with a fascinating organization in this space—Together AI. In this blog, we’ll explore how Together AI and MongoDB Atlas tremendously accelerated the adoption of gen AI by combining the capabilities of both platforms to bring high-impact retail use cases to life. Check out our AI Learning Hub to learn more about building AI-powered apps with MongoDB. Introduction to Together AI and MongoDB Atlas From the first look, it’s impressive how well Together AI is designed for gen AI projects. It’s a powerful platform that lets developers train, fine-tune, and deploy open-source AI models with just a few lines of code. This is a critical component for retrieval-augmented generation (RAG) . With RAG, AI can pull real-time business-specific data from MongoDB Atlas , which means retailers get more reliable and relevant outputs. That’s crucial when dealing with data as dynamic as customer behavior or inventory movement from online and physical stores. With its flexible data model, MongoDB Atlas is an ideal database engine for handling diverse data needs. It’s fully managed, multi-cloud, and exceptional at managing different data types, including the vector embeddings that power AI applications. One important feature is MongoDB Atlas Vector Search , a smart library that stores and indexes vector embeddings, making it simple to integrate with Together AI. This lets retailers generate timely, personalized responses to customer queries, creating a better experience all around. Identifying retail use cases With Together AI and MongoDB Atlas working together, the possibilities for retail are huge. Here are some of the use cases we’ve been exploring and testing with clients, each bringing measurable value to the table: Product description generation Product onboarding to a retail e-commerce portal is a time-consuming effort for many retailers. They need to ensure they’ve created a product description that matches the image, then deploy it to their e-commerce portal. For multilingual portals and multiple operating geographies, this challenge of accuracy increases. With Together AI’s support for multimodal models (e.g. Llama 3.2) and MongoDB Atlas’s vector embeddings, we can create accurate product descriptions in multiple languages. Check out a demo app to see it in action. Figure 1. Demo application for generating product descriptions. Personalized product recommendations Imagine being able to offer each customer exactly what they’re looking for, without them even asking. With Together AI’s retrieval and inference endpoints and MongoDB Atlas Vector Search, we can create highly personalized product recommendations. Analyzing individual preferences, browsing history, and past purchases becomes seamless, giving customers exactly what they need, possibly exactly when they need it. Conversational AI-powered tools (a.k.a. chatbots) We’re also deploying intelligent conversational tools that can understand complex questions, offer personalized assistance, and drive conversions. Together AI, paired with MongoDB Atlas, makes these bots responsive and relevant so customers feel like they’re talking to a knowledgeable adviser rather than a chatbot. When real-time data informs the responses, customer experience is enhanced. Dynamic pricing and promotions Pricing in retail is often a moving target, and AI-driven insights help us optimize our approach. We’ve used Together AI and MongoDB Atlas to analyze market trends, competitor pricing, and customer demand to keep our pricing competitive and adjust promotions in real-time. It’s incredible how much more strategic we can be with AI’s help. Inventory management and forecasting This might be one of the most impactful use cases I’ve worked on—using AI to predict demand and optimize stock levels. With Together AI and MongoDB Atlas, it’s easier to balance inventory, reduce waste, and ensure the products customers want are always in stock. This leads to better efficiency and fewer out-of-stock scenarios. Implementing retail use cases with Together AI and MongoDB Atlas Let me share a concrete example that really brings these concepts to life. Case study: Building a multilingual product-description-generation system We recently worked on a solution to create a product-description-generation system for an e-commerce platform. The goal was to provide highly descriptive product information based on the images of the products from the product catalog. This use case really demonstrated the value of storing the data in MongoDB and using the multilanguage capabilities of Together AI’s inference engine. Embeddings and inference with Together AI: Together AI generated product descriptions based on images retrieved from the product catalog using Llama 3.2 vision models. This way, each product’s unique characteristics were considered, then generated in multiple languages. These descriptions could then be embedded into the MongoDB Atlas Vector Search database via a simple API. Indexed embeddings with MongoDB Atlas Vector Search: Using MongoDB Atlas Vector Search capabilities, we created embeddings, and then indexed them to be used to retrieve relevant data based on other matched product queries. This step made sure the product descriptions were not just accurate but also relevant to the images. Real-time data processing: By connecting this setup to a real-time product dataset, we ensured that product descriptions in multiple languages were always updated automatically. So when a marketplace vendor or retailer uploads new images with distinct characteristics, they get up-to-date product descriptions in the catalog. This project showcased how Together AI and MongoDB Atlas could work together to deliver a solution that was reliable, highly efficient, and scalable. The feedback from users was overwhelmingly positive. They especially appreciated how intuitive and helpful the product descriptions were and how simple the whole product onboarding process could become for multilingual businesses spread across multiple geographical regions. Figure 2. An example of a query and response flow for a RAG architecture using MongoDB and Together AI. Looking at the business impacts For a retail organization, implementing Together AI and MongoDB Atlas can streamline the approach to gen AI, creating an effective and immediate positive impact to business in several ways: Reduced product onboarding time and costs: Retailers can onboard products faster and quickly make them available on their sales channels because of the ready-to-use tools and prebuilt integrations. This cuts down on the need for custom code and significantly lowers development costs. Increased flexibility and customization: MongoDB’s flexible document model and Together AI’s inference engine enables retailers to mold their applications to fit specific needs, such as back-office data processing, demand forecasting, and pricing as well as customer-facing conversational AI. Seamless integration with existing systems: MongoDB Atlas, in particular, integrates seamlessly with other frameworks we’re already using, like LangChain and LlamaIndex. This has made it easier to bring AI capabilities to adopt across various business units. Added support and expertise: The MongoDB AI Applications Program (MAAP) is especially helpful in beginning the journey into AI adoption across enterprises. It offers not just architectural guidance but also hands-on support, so enterprises can implement AI projects with confidence and a well-defined road map. Combining Together AI and MongoDB Atlas for a powerful approach to retail Together AI and MongoDB Atlas are a powerful combination for anyone in the retail industry looking to make the most of gen AI. It is evident how they help unlock valuable use cases, from personalized customer experiences to real-time operational improvements. By adopting MongoDB Atlas with Together AI, retailers can innovate, create richer customer interactions, and ultimately gain a competitive edge. If you’re exploring gen AI for retail, you’ll find that this combination has a quick, measurable, and transformative impact. Learn more about Together AI by visiting www.together.ai . For additional information, check out Together AI: Advancing the Frontier of AI With Open Source Embeddings, Inference, and MongoDB Atlas . Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads ? ” presented by MongoDB Field CTO, Rick Houlihan.

January 13, 2025

Using Agentic RAG to Transform Retail With MongoDB

In the competitive world of retail and ecommerce, it’s more important than ever for brands to connect with customers in meaningful, personalized ways. Shoppers today expect relevant recommendations, instant support, and unique experiences that feel tailored just for them. Check out our AI Learning Hub to learn more about building AI-powered apps with MongoDB. Enter retrieval-augmented generation (RAG) : a powerful approach that leverages generative AI and advanced search capabilities to deliver precise insights on demand. For IT decision-makers, the key challenge lies in integrating operational data with unstructured information—which can span object stores (like Amazon S3 and SharePoint), internal wikis, PDFs, Microsoft Word documents, and more. Enterprises must unlock value from curated, reliable internal data sources that often hold critical yet hard-to-access information. By combining RAG’s capabilities with these data assets, retailers can find contextually accurate information. For example, they can seamlessly surface needed information like return policies, refund processes, shipment details, and product recalls, driving operational efficiency and enhancing customer experiences. To provide the most relevant context to a large language model (LLM) , traditional RAG (which has typically relied on vector search) needs to be combined with real-time data in an operational database, the last conversation captured in a customer relationship management API call to a REST endpoint, or both. RAG has evolved to become agentic—that is, it’s capable of understanding a user inquiry and translating it to determine which path to use and which repositories to access to answer the question. MongoDB Atlas and Dataworkz provide an agentic RAG as a service solution that enables retailers to combine operational data with relevant unstructured data to create transformational experiences for their customers. MongoDB Atlas stores and unifies diverse data formats—such as customer purchases, inventory levels, and product descriptions—making them easily accessible. Dataworkz then transforms this data into vector embeddings, enabling a multistep agentic RAG pipeline to retrieve and create personalized, context-aware responses in real time. This is especially powerful in the context of customer support, product recommendations, and inventory management. When customers interact with retailers, Dataworkz dynamically retrieves real-time data from MongoDB Atlas, and, where needed, combines it with unstructured information to generate personalized AI responses, enhancing the customer experience. This architecture improves engagement, optimizes inventory, and provides scalable, adaptable AI capabilities, ultimately driving a more efficient and competitive retail operation. Reasons for using MongoDB Atlas and Dataworkz MongoDB Atlas and Dataworkz work together to deliver agentic RAG as a service for a smarter, more responsive customer experience. Here’s a quick breakdown of how: Vector embeddings and smart search: The Dataworkz RAG builder enables anyone to build sophisticated retrieval mechanisms that turn words, phrases, or even customer behaviors into vector embeddings—essentially, numbers that capture their meaning in a way that’s easy for AI to understand—and store them in MongoDB Atlas. This makes it possible to search for content based on meaning rather than exact wording, so search results are more accurate and relevant. Scalable, reliable performance: MongoDB Atlas’s cloud-based, distributed setup is built to handle high-traffic retail environments, minimizing disruptions during peak shopping times. Deep context with Dataworkz’s agentic RAG as a service: Retailers can build agentic workflows powered by RAG pipelines that combine lexical and semantic search with knowledge graphs to fetch the most relevant data from unstructured operational and analytical data sources before generating AI responses. This combination gives ecommerce brands the power to personalize experiences at a vastly larger scale. Figure 1: Reference architecture for customer support chatbots with Dataworkz and MongoDB Atlas Retail e-commerce use cases So how does this all work in practice? Here are some real-world examples of how MongoDB Atlas and Dataworkz are helping ecommerce brands create standout experiences. Building smarter customer-support chatbots Today’s shoppers want quick, accurate answers, and RAG makes this possible. When a customer asks a chatbot, “Where’s my order?” RAG enables the bot to pull the latest order and shipping details stored in MongoDB Atlas. Even if the question is phrased differently—say, “I need my order status”—the RAG-powered vector search can interpret the intent and fetch the correct response. As a result, the customer gets the help they need without waiting on hold or navigating complex menus. Personalizing product recommendations Imagine a customer who’s shown interest in eco-friendly products. With MongoDB Atlas’s vector embeddings, a RAG-powered system can identify this preference and adjust recommendations accordingly. So when the customer returns, they see suggestions that match their style—like organic cotton clothing or sustainably sourced kitchenware. This kind of recommendation feels relevant and thoughtful, making the shopping experience more enjoyable and increasing the chances of a purchase. Creating dynamic marketing content Marketing thrives on fresh, relevant content. With MongoDB Atlas managing product data and Dataworkz generating personalized messages, brands can send out dynamic promotions that truly resonate. For example, a customer who browsed outdoor gear might receive a curated email with top-rated hiking boots or seasonal discounts on camping equipment. This kind of targeted messaging feels personal, not pushy, building stronger customer loyalty. Enhancing site search experiences Traditional e-commerce searches often rely on exact keyword matches, which can lead to frustrating dead ends. But with MongoDB Atlas Vector Search and Dataworkz’s agentic RAG, search can be much smarter. For example, if a customer searches for “lightweight travel shoes,” the system understands that they’re looking for comfortable, portable footwear for travel, even if none of the product listings contain those exact words. This makes shopping smoother and more intuitive and less of a guessing game. Understanding trends in customer sentiment For e-commerce brands, understanding how customers feel can drive meaningful improvements. With RAG, brands can analyze reviews, social media comments, and support interactions to capture sentiment trends in MongoDB Atlas. Imagine a brand noticing a spike in mentions of “too small” in product reviews for a new shoe release—this insight lets them quickly adjust sizing info on the product page or update their stock. It’s a proactive approach that shows customers they’re being heard. Interactions that meet customers where they are In essence, MongoDB Atlas and Dataworkz’s RAG models enable retailers to make e-commerce personalization and responsiveness smarter, more efficient, and easier to scale. Together, they help retailers deliver exactly what customers are looking for—whether it’s a personalized recommendation, a quick answer from a chatbot, or just a better search experience. In the end, it’s about meeting customers where they are, with the information and recommendations they need. With MongoDB and Dataworkz, e-commerce brands can create that kind of connection—making shopping easier, more enjoyable, and ultimately more memorable. Learn more about Dataworkz on MongoDB by visiting dataworkz.com . The Dataworkz free tier is powered by MongoDB Atlas Vector Search . Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads ? ” presented by MongoDB Field CTO, Rick Houlihan.

December 23, 2024

Building Gen AI with MongoDB & AI Partners | November 2024

Unless you’ve been living under a rock, you know it’s that time of year again—re:Invent season! Last week, I was in Las Vegas for AWS re:Invent, one of our industry’s most important annual conferences. re:Invent 2024 was a whirlwind of keynote speeches, inspirational panels and talks, and myriad ways to spend time with colleagues and partners alike. And this year, MongoDB had its biggest re:Invent presence ever, alongside some of the most innovative players in AI. The headline? The MongoDB AI Application Program (MAAP) . Capgemini, Confluent, IBM, QuantumBlack AI by McKinsey, and Unstructured joined MAAP, boosting the value customers receive from the program and cementing MongoDB’s position as a leader in driving AI innovation. We also announced that MongoDB is collaborating with Meta to support developers with Meta models and the end-to-end MAAP technology stack. Figure 1: The MongoDB booth at re:Invent 2024 MongoDB’s re:Invent AI Showcase was another showstopper. As part of the AI Hub in the re:Invent expo hall, MongoDB and partners Arcee, Arize, Fireworks AI, and Together AI collaborated on engaging demos and presentations. Meanwhile, the “ Building Your AI Stack ” panel—which included leaders from MongoDB and MAAP partners Anyscale, Cohere, and Fireworks AI—featured an insightful discussion on building AI technologies, challenges with taking applications to production, and what’s next in AI. As at every re:Invent, networking opportunities abounded; I had so many interesting and fruitful conversations with partners, customers, and developers during the week’s many events, including those MongoDB sponsored—like the Cabaret of Innovation with Accenture, Anthropic, and AWS; the Galactic Gala with Cohere; and Tuesday’s fun AI Game Night with Arize, Fireworks AI, and Hasura. Figure 2: Networking at the Galactic Gala Whether building solutions or building relationships, MongoDB’s activities at re:Invent 2024 showcased the importance of collaboration to the future of AI. As we close out the year, I’d like to thank our amazing partners for their support—we look forward to more opportunities to collaborate in 2025! And if you want to learn more about MongoDB’s announcements at re:Invent 2024, please read this blog post by my colleague Oliver Tree. Welcoming new AI and tech partners In November, we also welcomed two new AI and tech partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! Braintrust Braintrust is an end-to-end platform for building and evaluating world-class AI apps. “ We're excited to partner with MongoDB to share how you can build reliable and scalable AI applications with vector databases,” said Ankur Goyal, CEO of Braintrust. “By combining Braintrust’s simple evaluation workflows with MongoDB Atlas, developers can build an end-to-end RAG application and iterate on prompts and models without redeploying their code.” Langtrace Langtrace is an open-source observability tool that collects and analyzes traces in order to help you improve your LLM apps. “ We're thrilled to join forces with MongoDB to help companies trace, debug, and optimize their RAG features for faster production deployment and better accuracy,” said Karthik Kalyanaraman, Co-founder and CTO at Langtrace AI. “MongoDB has made it dead simple to launch a scalable vector database with operational data. Our collaboration streamlines the RAG development process by empowering teams with database observability, speeding up time to market and helping companies get real value to customers faster.” But wait, there's more! To learn more about building AI-powered apps with MongoDB, check out our AI Resources Hub and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem.

December 12, 2024

IntellectAI Unleashes AI at Scale With MongoDB

IntellectAI , a business unit of Intellect Design Arena , is a trailblazer in AI. Since 2019 the company has been using MongoDB to drive a number of innovative use cases in the banking, financial services, and insurance (BFSI) industry. For example, Intellect Design Arena’s broader insurance business has been using MongoDB Atlas as a foundation for its architecture. Atlas’s flexibility enables Intellect Design Arena to manage varied and constantly evolving datasets and increase operational performance. Check out our AI Learning Hub to learn more about building AI-powered apps with MongoDB. Building on this experience, the company looked at deepening its use of MongoDB Atlas’s unique AI and search capabilities for its new IntellectAI division. IntellectAI Partner and Chief Technology Officer Deepak Dastrala spoke on the MongoDB.local Mumbai stage in September 2024 . Dastrala shared how the company has built a powerful, scalable, and highly accurate AI platform-as-a-service offering, Purple Fabric , using MongoDB Atlas and Atlas Vector Search . Using AI to generate actionable compliance insights for clients Purple Fabric helps transform enterprise data into actionable AI insights and solutions by making data ready for retrieval-augmented generation (RAG). The platform collects and analyzes structured and unstructured enterprise data, policies, market data, regulatory information, and tacit knowledge to enable its AI Expert Agent System to achieve precise, goal-driven outcomes with accuracy and speed. A significant part of IntellectAI’s work involves assessing environmental, social, and governance (ESG) compliance. This requires companies to monitor diverse nonfinancial factors such as child labor practices, supply chain ethics, and biodiversity. “Historically, 80% to 85% of AI projects fail because people are still worried about the quality of the data. With Generative AI, which is often unstructured, this concern becomes even more significant,” said Deepak Dastrala. According to Deepak Dastrala, the challenge today is less about building AI tools than about operationalizing AI effectively. A prime example of this is IntellectAI’s work with one of the largest sovereign wealth funds in the world, which manages over $1.5 trillion across 9,000 companies. The fund sought to utilize AI for making responsible investment decisions based on millions of unique data points across those companies, including compliance, risk prediction, and impact assessment. This included processing both structured and unstructured data to enable the fund to make informed, real-time decisions. “We had to process almost 10 million documents in more than 30 different data formats—text and image—and correlate both structured and unstructured data to provide those particular hard-to-find insights,” said Dastrala. “We ingested hundreds of millions of vectors across these documents, and this is where we truly understood the power of MongoDB.” For example, by leveraging MongoDB's capabilities, including time series collections, IntellectAI simplifies the processing of unstructured and semi-structured data from companies' reports over various years, extracting key performance metrics and trends to enhance compliance insights. “MongoDB Atlas and Vector Search give us flexibility around the schema and how we can turn particular data into knowledge,” Dastrala said. For Dastrala, there are four unique advantages of working with MongoDB—particularly using MongoDB Atlas Vector Search—that other companies should consider when building long-term AI strategies: a unified data model, multimodality, dynamic data linking, and simplicity. “For me, the unified data model is a really big thing because a stand-alone vector database will not help you. The kind of data that you will continue to ingest will increase, and there are no limits. So whatever choices that you make, you need to make the choices from the long-term perspective,” said Dastrala. Delivering massive scale, driving more than 90% AI accuracy, and accelerating decision-making with MongoDB Before IntellectAI built this ESG capability, its client relied on subject matter experts, but they could examine only a limited number of companies and datasets and were unable to scale their investigation of portfolios or information. “If you want to do it at scale, you need proper enterprise support, and that’s where MongoDB became really handy for us. We are able to give 100% coverage and do what the ESG analysts were able to do for this organization almost a thousand times faster,” said Dastrala. Previously, analysts could examine only between 100 and 150 companies. With MongoDB Atlas and Atlas Vector Search, Purple Fabric can now process information from over 8,000 companies across the world, covering different languages and delivering more than 90% accuracy. “Generally, RAG will probably give you 80% to 85% accuracy. But in our case, we are talking about a fund deciding whether to invest billions or not in a company, so the accuracy should be 90% minimum,” said Dastrala. “What we are doing is not ‘simple search’; it is very contextual, and MongoDB helps us provide that high-dimension data.” Concluding the presentation speech on the MongoDB.local stage, Dastrala reminded the audience why IntellectAI is using MongoDB’s unique capabilities to support its long-term vision: “Multimodality is very important because today we are using text and images, but tomorrow we might use audio, video, and more. And don’t forget, from a developer perspective, how important it is to keep the simplicity and leverage all the options that MongoDB provides.” This is just the beginning for IntellectAI and its Purple Fabric platform. “Because we are doing more and more with greater accuracy, our customers have started giving us more problems to solve. And this is absolutely happening at a scale [that] is unprecedented,” said Dastrala. Using MongoDB Atlas to drive broader business benefits across Intellect Design The success encountered with the Purple Fabric platform is leading Intellect Design’s broader business to look at MongoDB Atlas for more use cases. Intellect Design is currently in the process of migrating more of its insurance and Wealth platforms onto MongoDB Atlas, as well as leveraging the product family to support the next phase of its app modernization strategy. Using MongoDB Atlas, Intellect Design aims to improve resilience, support scalable growth, decrease time to market, and enhance data insights. Head over to our product page to learn more about MongoDB Atlas . To learn more about how MongoDB Atlas Vector Search can help you build or deepen your AI and search capabilities, visit our Vector Search page . Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads ? ” presented by MongoDB Field CTO, Rick Houlihan.

December 12, 2024

The MongoDB AI Applications Program: Delivering Customer Value

When people ask me about MongoDB, I tell them that they’ve probably interacted with MongoDB without realizing it. In fact, many of the world’s leading companies—including 70% of the Fortune 100—are powered by MongoDB. Everything we do at MongoDB is about serving our customers, but that often happens in the background, where our work is invisible to many users. In my case, that means building an ecosystem of partners who enable customer innovation. A recent example is how MongoDB teamed up with Amazon Web Services (AWS) and Amazon Bedrock to help Base39 —a Brazilian fintech provider—automate loan analysis, decreasing decision time from three days to one hour, and reducing cost per loan analysis by 96%. And there’s the Indian company IndiaDataHub, which joined the MongoDB AI Applications Program (MAAP) to access AI expertise, in-depth support, and a full spectrum of technologies to enhance AI functionality within IndiaDataHub’s analytics platform. This includes connecting relevant data in MongoDB with Meta's AI models to perform sentiment analysis on text datasets. I could go on and on—after all, tens of thousands of MongoDB’s customers have success stories like these. Enabling customer success is precisely why we launched MAAP last summer, and why the program has evolved since. Customers tell us that they want to take advantage of AI, but they’re unsure how to navigate a fast-moving market, how to control costs, and how to unlock business value from their AI investments. So with MAAP, MongoDB offers customers a full AI stack and an integrated set of professional services to help them keep pace with the latest innovations, identify the best AI use cases, and to help them future-proof AI investments. With today’s announcement , Capgemini, Confluent, IBM, QuantumBlack, AI by McKinsey, and Unstructured have joined the 22 companies that now comprise the MAAP partner network. Which means that the MAAP ecosystem (which was founded with Accenture, Anthropic, Anyscale, Arcee AI, AWS, Cohere, Credal, Fireworks AI, Google Cloud, gravity9, LangChain, LlamaIndex, Microsoft Azure, Nomic, PeerIslands, Pureinsights, and Together AI) offers additional cutting-edge AI integration and solutions to customers—and more ways to set them on the path to AI success. CentralReach: Making an impact on autism with AI More than 150 customers have already gotten involved with MAAP, but I’m particularly excited to share the work of CentralReach . CentralReach provides an AI-powered electronic medical record (EMR) platform that is designed to improve outcomes for children and adults diagnosed with autism and related intellectual and developmental disabilities (IDD). Prior to working with MongoDB and MAAP, CentralReach was looking for an experienced partner to further connect and aggregate its more than 4 billion financial and clinical data points across its suite of solutions. CentralReach leveraged MongoDB’s document model to aggregate the company’s diverse forms of information from assessments to clinical data collection, so the company could build rich AI-assisted solutions on top of its database. Meanwhile, MAAP partners helped CentralReach to design and optimize multiple layers of its comprehensive buildout. All of this will enable CentralReach to support initiatives such as value-based outcome measurement, clinical supervision, and care delivery efficacy. With these new data layers in place, providers will be able to make substantial improvements to their clinical delivery to optimize care for all those they serve. “As a mission-driven organization, CentralReach is always looking to innovate on behalf of the clinical professionals—and the more than 350,000 autism and IDD learners—that we serve globally,” said Chris Sullens, CEO of CentralReach. “So being able to lean on MongoDBs database technology and draw on the collective expertise of the MAAP partner network—in addition to MongoDB’s tech expertise and services—to help us improve outcomes for our customers and their clients worldwide has been invaluable.” Working backward from customer needs The addition of Capgemini, Confluent, IBM, QuantumBlack, AI by McKinsey, and Unstructured to the MAAP partner network offers customers additional technology and AI support options. It also builds on MongoDB’s larger partner ecosystem , which is designed to give customers flexibility and choice. By working closely with our partners on product launches, integrations, and real-world challenges, MongoDB has been able to bring a better understanding of the challenges facing customers—and to give them the resources and confidence to move forward with groundbreaking technology like AI . Examples of support MAAP has offered customers include: Guidance on chunking strategies for an AI-native healthcare provider providing patient recommendations based on complex data sources Collaboration on advanced retrieval techniques to improve response accuracies for a large consultancy to automate manual research Evaluation of embedding models for multi-modal data stores for a well-known automaker developing diagnostic applications Guidance on architectures for complex agentic workflows for a mature enterprise technology provider augmenting customer service workflows One way we offer this support is through the MAAP Center of Excellence (CoE). The MAAP CoE comprises AI technical experts from across MongoDB and the MAAP partner ecosystem who collaborate with customers to understand their challenges, technical requirements, and timelines. The MAAP CoE can then recommend custom full-stack architectures and implementation best practices, optimized for the customer’s specific use case and requirements. Indeed, customization is intrinsic to MAAP: MongoDB and our MAAP partners will meet customers wherever they are to help them achieve their goals. For example, if an organization wants to fully own its AI application development, MongoDB and partners can provide guidance and expertise. And in cases where customers want hands-on support, we can help speed projects with professional services. Ultimately, we want MAAP customers—and anyone who works with MongoDB’s partner ecosystem at large—to feel empowered to own their application development, and to transform challenges into opportunities. Let’s build the next big thing together! To learn more about building AI-powered apps with MongoDB, see MongoDB’s AI Resources Hub , the Partner Ecosystem Catalog , or visit the MAAP page . And check out our partner Confluent’s own blog post about MAAP!

December 2, 2024

New Course for Building AI Applications with MongoDB on AWS

Developers everywhere want to expand the limits of what they can build with new generative AI technologies. But the AI market and its offerings have evolved so quickly that for many developers, keeping up can feel overwhelming. As we’ve entered the AI era, MongoDB and Amazon Web Services (AWS) have built upon our eight year partnership to deliver technology integrations—like MongoDB Atlas’s integrations with Amazon Bedrock and Amazon Q Developer (formerly CodeWhisperer)—that simplify the process of building and deploying gen AI applications. By combining MongoDB’s integrated operational and vector database capabilities with AWS’s AI infrastructure solutions, our goal is to make it easier for our developer community to innovate with AI. So, to help developers get started, we’re launching a new, free MongoDB Learning Badge focused on Building AI Applications with MongoDB on AWS . Building AI with MongoDB on AWS This is MongoDB University’s first AWS Learning Badge, and with it, we’ve focused on teaching developers how Amazon Bedrock and Atlas work together—including how to create a knowledge base in Amazon Bedrock, configure a knowledge base to use Atlas, inspect how a query is answered, create an Agent to answer questions based on data in Atlas, and configure guardrails that support responsible agentic behavior. In short, developers will learn how to remove the heavy lifting of infrastructure configuration and integration so they can get up and running with innovative new semantic search and RAG applications faster. Amazon Bedrock is a fully managed service from AWS that offers a choice of high-performing foundation models from leading AI companies via a single API, along with a broad set of capabilities organizations need to build secure, high-performing AI applications. Developers can connect Bedrock to MongoDB Atlas for blazing-fast vector searches and secure vector storage with minimal coding. With the integration, developers’ can use their proprietary data alongside industry-leading foundation models to launch AI applications that deliver hyper-intelligent and hyper-relevant results. Tens of thousands of customers are running MongoDB Atlas on AWS, and many have already embarked successfully on cutting-edge AI journeys. Take Scalestack for example, which used MongoDB Atlas Vector Search to build a RAG-powered AI copilot, named Spotlight, and is now using Bedrock’s customizable models to enhance Spotlight’s relevance and performance. Meanwhile, Base39 —a Brazilian fintech provider—used MongoDB Atlas and Amazon Bedrock to automate loan analysis, decreasing decision time from three days to one hour and reducing cost per loan analysis by 96%. Badge up with MongoDB MongoDB Learning Badges are a powerful way to demonstrate your dedication to continuous learning. These digital credentials not only validate your educational accomplishments but also stand as a testament to your expertise and skill. Whether you're a seasoned developer, an aspiring data scientist, or an enthusiastic student, earning a MongoDB badge can elevate your professional profile and unlock new opportunities in your field. Learn, prepare, and earn Complete the Learning Badge Path and pass a brief assessment to earn your badge. Upon completion, you'll receive an email with your official Credly badge and digital certificate, ready to share on social media, in email signatures, or on your resume. Additionally, you'll gain inclusion in the Credly Talent Directory, where you will be visible to recruiters from top employers. Millions of builders have been trained through MongoDB University courses—join them and get started building your AI future with MongoDB Atlas and AWS. And if you’re attending AWS re:Invent 2024, come find MongoDB at Booth #824. The first 100 people to receive their learning badge will receive a special gift! Start learning today

December 2, 2024

AI-Powered Call Centers: A New Era of Customer Service

Customer satisfaction is critical for insurance companies. Studies have shown that companies with superior customer experiences consistently outperform their peers. In fact, McKinsey found that life and property/casualty insurers with superior customer experiences saw a significant 20% and 65% increase in Total Shareholder Return , respectively, over five years. A satisfied customer is a loyal customer. They are 80% more likely to renew their policies, directly contributing to sustainable growth. However, one major challenge faced by many insurance companies is the inefficiency of their call centers. Agents often struggle to quickly locate and deliver accurate information to customers, leading to frustration and dissatisfaction. This article explores how Dataworkz and MongoDB can transform call center operations. By converting call recordings into searchable vectors (numerical representations of data points in a multi-dimensional space), businesses can quickly access relevant information and improve customer service. We'll dig into how the integration of Amazon Transcribe, Cohere, and MongoDB Atlas Vector Search—as well as Dataworkz's RAG-as-a-service platform— is achieving this transformation. Check out our AI Learning Hub to learn more about building AI-powered apps with MongoDB. From call recordings to vectors: A data-driven approach Customer service interactions are goldmines of valuable insights. By analyzing call recordings, we can identify successful resolution strategies and uncover frequently asked questions. In turn, by making this information—which is often buried in audio files— accessible to agents, they can give customers faster and more accurate assistance. However, the vast volume and unstructured nature of these audio files make it challenging to extract actionable information efficiently. To address this challenge, we propose a pipeline that leverages AI and analytics to transform raw audio recordings into vectors as shown in Figure 1: Storage of raw audio files: Past call recordings are stored in their original audio format Processing of the audio files with AI and analytics services (such as Amazon Transcribe Call Analytics ): speech-to-text conversion, summarization of content, and vectorization Storage of vectors and metadata: The generated vectors and associated metadata (e.g., call timestamps, agent information) are stored in an operational data store Figure 1: Customer service call insight extraction and vectorization flow Once the data is stored in vector format within the operational data store, it becomes accessible for real-time applications. This data can be consumed directly through vector search or integrated into a retrieval-augmented generation (RAG) architecture, a technique that combines the capabilities of large language models (LLMs) with external knowledge sources to generate more accurate and informative outputs. Introducing Dataworkz: Simplifying RAG implementation Building RAG pipelines can be cumbersome and time-consuming for developers who must learn yet another stack of technologies. Especially in this initial phase, where companies want to experiment and move fast, it is essential to leverage tools that allow us to abstract complexity and don’t require deep knowledge of each component in order to experiment with and realize the benefits of RAG quickly. Dataworkz offers a powerful and composable RAG-as-a-service platform that streamlines the process of building RAG applications for enterprises. To operationalize RAG effectively, organizations need to master five key capabilities: ETL for LLMs: Dataworkz connects with diverse data sources and formats, transforming the data to make it ready for consumption by generative AI applications. Indexing: The platform breaks down data into smaller chunks and creates embeddings that capture semantics, storing them in a vector database. Retrieval: Dataworkz ensures the retrieval of accurate information in response to user queries, a critical part of the RAG process. Synthesis: The retrieved information is then used to build the context for a foundational model, generating responses grounded in reality. Monitoring: With many moving parts in the RAG system, Dataworkz provides robust monitoring capabilities essential for production use cases. Dataworkz's intuitive point-and-click interface (as seen in Video 1) simplifies RAG implementation, allowing enterprises to quickly operationalize AI applications. The platform offers flexibility and choice in data connectors, embedding models, vector stores, and language models. Additionally, tools like A/B testing ensure the quality and reliability of generated responses. This combination of ease of use, optionality, and quality assurance is a key tenet of Dataworkz's "RAG as a Service" offering. Diving deeper: System architecture and functionalities Now that we’ve looked at the components of the pre-processing pipeline, let’s explore the proposed real-time system architecture in detail. It comprises the following modules and functions (see Figure 2): Amazon Transcribe , which receives the audio coming from the customer’s phone and converts it into text. Cohere ’s embedding model, served through Amazon Bedrock , vectorizes the text coming from Transcribe. MongoDB Atlas Vector Search receives the query vector and returns a document that contains the most semantically similar FAQ in the database. Figure 2: System architecture and modules Here are a couple of FAQs we used for the demo: Q: “Can you explain the different types of coverage available for my home insurance?” A: “Home insurance typically includes coverage for the structure of your home, your personal belongings, liability protection, and additional living expenses in case you need to temporarily relocate. I can provide more detailed information on each type if you'd like.” Q: “What is the process for adding a new driver to my auto insurance policy?" A: “To add a new driver to your auto insurance policy, I'll need some details about the driver, such as their name, date of birth, and driver's license number. We can add them to your policy over the phone, or you can do it through our online portal.” Note that the question is reported just for reference, and it’s not used for retrieval. The actual question is provided by the user through the voice interface and then matched in real-time with the answers in the database using Vector Search. This information is finally presented to the customer service operator in text form (see Fig. 3). The proposed architecture is simple but very powerful, easy to implement, and effective. Moreover, it can serve as a foundation for more advanced use cases that require complex interactions, such as agentic workflows , and iterative and multi-step processes that combine LLMs and hybrid search to complete sophisticated tasks. Figure 3: App interface, displaying what has been asked by the customer (left) and how the information is presented to the customer service operator (right) This solution not only impacts human operator workflows but can also underpin chatbots and voicebots, enabling them to provide more relevant and contextual customer responses. Building a better future for customer service By seamlessly integrating analytical and operational data streams, insurance companies can significantly enhance both operational efficiency and customer satisfaction. Our system empowers businesses to optimize staffing, accelerate inquiry resolution, and deliver superior customer service through data-driven, real-time insights. To embark on your own customer service transformation, explore our GitHub repository and take advantage of the Dataworkz free tier . Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads ? ” presented by MongoDB Field CTO, Rick Houlihan.

November 27, 2024

Better Digital Banking Experiences with AI and MongoDB

Interactive banking represents a new era in financial services where customers engage with digital platforms that anticipate, understand, and meet their needs in real-time. This approach encompasses AI-driven technologies such as chatbots, virtual assistants, and predictive analytics that allow banks to enhance digital self-service while delivering personalized, context-aware interactions. According to Accenture’s 2023 consumer banking study , 44% of consumers aged 18-44 reported difficulty accessing human support when needed, underscoring the demand for more responsive digital solutions that help bridge this gap between customers and financial services. Generative AI technologies like chatbots and virtual assistants can fill this need by instantly addressing inquiries, providing tailored financial advice, and anticipating future needs. This shift has tremendous growth potential; the global chatbot market is expected to grow at a CAGR of 23.3% from 2023 to 2030 , with the financial sector experiencing the fastest growth rate of 24.0%. This shift is more than just a convenience; it aims to create a smarter, more engaging, and intuitive banking journey for every user. Check out our AI Learning Hub to learn more about building AI-powered apps with MongoDB. Simplifying self-service banking with AI Navigating daily banking activities like transfers, payments, and withdrawals can often raise immediate questions for customers: “Can I overdraft my account?” “What will the penalties be?” or “How can I avoid these fees?” While the answers usually lie within the bank’s terms and conditions, these documents are often dense, complex, and overwhelming for the average user. At the same time, customers value their independence and want to handle their banking needs through self-service channels, but wading through extensive fine print isn't what they signed up for. By integrating AI-driven advisors into the digital banking experience, banks can provide a seamless, in-app solution that delivers instant, relevant answers. This removes the need for customers to leave the app to sift through pages of bank documentation in search of answers, or worse, endure the inconvenience of calling customer service. The result is a smoother and user-friendly interaction, where customers feel supported in their self-service journey, free from the frustration of navigating traditional, cumbersome information sources. The entire experience remains within the application, enhancing convenience and efficiency. Solution overview This AI-driven solution enhances the self-service experience in digital banking by applying Retrieval-Augmented Generation (RAG) principles, which combine the power of generative AI with reliable information retrieval, ensuring that the chatbot provides accurate, contextually relevant responses. The approach begins by processing dense, text-heavy documents, like terms and conditions, often the source of customer inquiries. These documents are divided into smaller, manageable chunks vectorized to create searchable data representations. Storing these vectorized chunks in MongoDB Atlas allows for efficient querying using MongoDB Atlas Vector Search , making it possible to instantly retrieve relevant information based on the customer’s question. Figure 1: Detailed solution architecture When a customer inputs a question in the banking app, the system quickly identifies and retrieves the most relevant chunks using semantic search. The AI then uses this information to generate clear, contextually relevant answers within the app, enabling a smooth, frustration-free experience without requiring customers to sift through dense documents or contact support. Figure 2: Leafy Bank mock-up chatbot in action How MongoDB supports AI-driven banking solutions MongoDB offers unique capabilities that empower financial institutions to build and scale AI-driven applications. Unified data model for flexibility: MongoDB’s flexible document model unifies structured and unstructured data, creating a consistent dataset that enhances the AI’s ability to understand and respond to complex queries. This model enables financial institutions to store and manage customer data, transaction history, and document content within a single system, streamlining interactions and making AI responses more contextually relevant. Vector search for enhanced querying: MongoDB Atlas Vector Search makes it easy to perform semantic searches on vectorized document chunks, quickly retrieving the most relevant information to answer user questions. This capability allows the AI to find precise answers within dense documents, enhancing the self-service experience for customers. Scalable integration with AI models: MongoDB is designed to work seamlessly with leading AI frameworks, allowing banks to integrate and scale AI applications quickly and efficiently. By aligning MongoDB Atlas with cloud-based LLM providers, banks can use the best tools available to interpret and respond to customer queries accurately, meeting demand with responsive, real-time answers. High performance and cost efficiency: MongoDB’s multi-cloud, developer-friendly platform allows financial institutions to innovate without costly infrastructure changes. It’s built to scale as data and AI needs to grow, ensuring banks can continually improve the customer experience with minimal disruptions. MongoDB’s built-in scalability allows banks to expand their AI capabilities effortlessly, offering a future-proof foundation for digital banking. Building future-proof applications Implementing generative AI presents several advantages, not only for end-users of the interactive banking applications but also for financial institutions: Enhanced user experience encourages customer satisfaction, ensures retention, boosts reputation, and reduces customer turnover while unlocking new opportunities for cross-selling and up-selling to increase revenue, drive growth and elevate customer value. Moreover, adopting AI-driven initiatives prepares the groundwork for businesses to develop innovative, creative, and future-proof applications to address customer needs and upgrade business applications with features that are shaping the industry and will continue to do so, here are some examples: Summarize and categorize transactional information by powering applications with MongoDB’s Real-Time Analytics . Understand and find trends based on customer behavior that could positively impact and leverage fraud prevention , anti-money laundering (AML) , and credit card application (just to mention a few). Offering investing, budgeting, and loan assessments through AI-powered conversational banking experience. In today’s data-driven world, companies face increasing pressure to stay ahead of rapid technological advancements and ever-evolving customer demands. Now more than ever, businesses must deliver intuitive, robust, and high-performing services through their applications to remain competitive and meet user expectations. Luckily, MongoDB provides businesses with comprehensive reference architectures for building generative AI applications, an end-to-end technology stack that includes integrations with leading technology providers, professional services, and a coordinated support system through the MongoDB AI Applications Program (MAAP) . By building AI-enriched applications with the leading multi-cloud developer data platform, companies can leverage low-cost, efficient solutions through MongoDB’s flexible and scalable document model which empowers businesses to unify real-time, operational, unstructured, and AI-related data, extending and customizing their applications to seize upcoming technological opportunities. Check out these additional resources to get started on your AI journey with MongoDB: How Leading Industries are Transforming with AI and MongoDB Atlas - E-book Our Solutions Library is where you can learn about different use cases for gen AI and other interesting topics that are applied to financial services and many other industries. Want to learn more about why MongoDB is the best choice for supporting modern AI applications? Check out our on-demand webinar, “ Comparing PostgreSQL vs. MongoDB: Which is Better for AI Workloads ? ” presented by MongoDB Field CTO, Rick Houlihan.

November 26, 2024