Multi-Agent Collaboration for Manufacturing Operations Optimization
While there are some naysayers across the media landscape who doubt the potential impact of AI innovations, for those of us immersed in implementing AI on a daily basis, there’s wide agreement that its potential is huge and world-altering. It’s now generally accepted that
Large Language Models
(LLMs) will eventually be able to perform tasks as well—if not better—than a human. And the size of the potential AI market is truly staggering. Bain’s AI analysis estimates that the total addressable market (TAM) for AI and gen AI-related hardware and software will grow between 40% and 55% annually, reaching between $780 billion and $990 billion by 2027. This growth is especially relevant to industries like manufacturing, where generative AI can be applied across the value chain. From inventory categorization to product risk assessments, knowledge management, and predictive maintenance strategy generation, AI's potential to optimize manufacturing operations cannot be overstated.
But in order to realize the transformative economic potential of AI, applications powered by LLMs need to evolve beyond chatbots that leverage
retrieval-augmented generation
(RAG). Truly transformative AI-powered applications need to be objective-driven, not just responding to user queries but also taking action on behalf of the user. This is crucial in complex manufacturing processes. In other words, they need to act like agents.
Agentic systems, or compound AI systems, are currently emerging as the next frontier of generative AI applications. These systems consist of a single or multiple AI agents that collaborate with each other and use tools to provide value. An AI agent is a computational entity containing short- and long-term memory, which enables it to provide context to an LLM. It also has access to tools, such as web search and function calling, that enable it to act upon the response from an LLM or provide additional information to the LLM.
Figure 1.
Basic components of an agentic system.
An agentic system can have more than one AI agent. In most cases, AI agents may be required to interact with other agents within the same system or external systems., They’re expected to engage with humans for feedback or review of outputs from execution steps. AI agents can also comprehend the context of outputs from other agents and humans, and change their course of action and next steps. For example, agents can monitor and optimize various facets of manufacturing operations simultaneously, such as supply chain logistics and production line efficiency. There are certain benefits of having a multi-agent collaboration system instead of having one single agent. You can have each agent customized to do one thing and do it well. For example, one agent can create meeting minutes while another agent writes follow-up emails. It can also be implemented on predictive maintenance, with one agent analyzing machine data to find mechanical issues before they occur while another optimizes resource allocation, ensuring materials and labor are utilized efficiently. You can also provision dedicated resources and tools for different agents. For example, one agent uses a model to analyze and transcribe videos while the other uses models for natural language processing (NLP) and answering questions about the video.
Figure 2.
Multi-agent collaboration system.
MongoDB can act as the memory provider for an agentic system. Conversation history alongside vector embeddings can be stored in MongoDB leveraging the flexible document model.
Atlas Vector Search
can be used to run semantic search on stored vector embeddings, and our
sharding
capabilities allow for horizontal scaling without compromising on performance. Our clients across industries have been leveraging MongoDB Atlas for their
generative AI use cases
, including agentic AI use cases such as
Questflow
, which is transforming work by using multi-agent AI to handle repetitive tasks in strategic roles. Supported by MiraclePlus and MongoDB Atlas, it enables startups to automate workflows efficiently. As it expands to larger enterprises, it aims to boost AI collaboration and streamline task automation, paving the way for seamless human-AI integration.
The concept of a multi-agent collaboration system is new, and it can be challenging for manufacturing organizations to identify the right use case to apply this cutting-edge technology. Below, we propose a use case where three agents collaborate with each other to optimize the performance of a machine.
Multi-agent collaboration use case in manufacturing
In manufacturing operations, leveraging multi-agent collaboration for predictive maintenance can significantly boost operational efficiency. For instance, consider a production environment where three distinct agents—predictive maintenance, process optimization, and quality assurance—collaborate in real-time to refine machine operations and maintain the factory at peak performance.
In Figure 3, the predictive maintenance agent is focused on machinery maintenance. Its main tasks are to monitor equipment health by analyzing sensor data generated from the machines. It predicts machine failures and recommends maintenance actions to extend machinery lifespan and prevent downtime as much as possible.
Figure 3.
A multi-agent system for production optimization.
The process optimization agent is designed to enhance production efficiency. It analyzes production parameters to identify inefficiencies and bottlenecks, and it optimizes said parameters by adjusting them (speed, vibration, etc.) to maintain product quality and production efficiency. This agent also incorporates feedback from the other two agents while making decisions on what production parameter to tune. For instance, the predictive maintenance agent can flag an anomaly in a milling machine temperature sensor reading; for example, if temperature values are going up, the process optimization agent can review the cutting speed parameter for adjustment.
The quality assurance agent is responsible for evaluating product quality. It analyzes optimized production parameters and checks how those parameters can affect the quality of the product being fabricated. It also provides feedback for the other two agents.
The three agents constantly exchange feedback with each other, and this feedback is also stored in the
MongoDB Atlas
database as agent short-term memory. In contrast, vector embeddings and sensor data are persisted as long-term memory. MongoDB is an ideal memory provider for agentic AI use case development thanks to its flexible document model, extensive security and data governance features, and horizontal scalability.
All three agents have access to a "search_documents" tool, which leverages Atlas Vector Search to query vector embeddings of machine repair manuals and old maintenance work orders. The predictive maintenance agent leverages this tool to figure out additional insights while performing machine root cause diagnostics.
Set up the use case shown in this article using our
repo
. To learn more about MongoDB’s role in the manufacturing industry, please visit our
manufacturing and automotive webpage
.
To learn more about AI agents, visit our
Demystifying AI Agents guide
.
February 19, 2025