Zuhair Ahmed

4 results

Leveraging MongoDB Atlas in your Internal Developer Platform (IDP)

DevOps, a portmanteau of “Developer” and “Operations,” rose to prominence around the early 2010s and established a culture of incorporating automated processes and tools designed to deliver applications and services to users faster than the traditional software development process. A significant part of that was the movement to "shift left" by empowering developers to self-serve their infrastructure needs, in theory offering them more control over the application development lifecycle in a way that reduced the dependency on central operational teams. While these shifts towards greater developer autonomy were occurring, the proliferation of public clouds, specific technologies (like GitHub, Docker, Kubernetes, Terraform), and microservices architectures entered the market and became standard practice in the industry. As beneficial as these infrastructure advancements were, these technical shifts added complexity to the setups that developers were using as a part of their application development processes. As a result, developers needed to have a more in-depth, end-to-end understanding of their toolchain, and more dauntingly, take ownership of a growing breadth of infrastructure considerations. This meant that the "shift left" drastically increased the cognitive load on developers, leading to inefficiencies because self-managing infrastructure is time-consuming and difficult without a high level of expertise. In turn, this increased the time to market and hindered innovation. Concurrently, the increasing levels of permissions that developers needed within the organization led to a swath of compliance issues, such as inconsistent security controls, improper auditing, unhygienic data and data practices increased overhead which ate away at department budgets, and incorrect reporting. Unsurprisingly, the desire to enable developers to self-serve to build and ship applications hadn't diminished, but it became clear that empowering them without adding friction or a high level of required expertise needed to become a priority. With this goal in mind, it became clear that investment was required to quickly and efficiently abstract away the complexities of the operational side of things for developers. From this investment comes the rise of Platform Engineering and Internal Developer Platforms (whether companies are labeling it as such or not). Platform engineering and the rise of internal developer platforms Within a developer organization, platform engineering (or even a central platform team) is tasked with creating golden paths for developers to build and ship applications at scale while keeping infrastructure spend and cognitive load on developers low. At the core of the platform engineering ethos is the goal of optimizing the developer experience to accelerate the delivery of applications to customers. Like teaching someone to fish, platform teams help pave the way for greater developer efficiency by providing them with pipelines that they can take and run with, reducing time to build, and paving the way for greater developer autonomy without burdening developers with complexity. To do this, platform teams strive to design toolchains and workflows based on the end goals of the developers in their organization. Therefore, it’s critical for the folks tasked with platform engineering to understand the needs of their developers, and then build a platform that is useful to the target audience. The end result is what is often (but not exclusively) known as an Internal Developer Platform. What is an IDP? An IDP is a collection of tools and services, sourced and stitched together by central teams to create golden paths for developers who will then use the IDP to simplify and streamline application building. IDPs reduce complexity and lower cognitive load on developers - often by dramatically simplifying the experience of configuring infrastructure and services that are not a direct part of the developer's application. They encourage developers to move away from spending excess time managing the tools they use and allow them to focus on delivering applications at speed and scale. IDPs enable developers the freedom to quickly and easily build, deploy, and manage applications while reducing risk and overhead costs for the organization by centralizing oversight and iteration of development practices. An IDP is tailored with developers in mind and will often consist of the following tools: Infrastructure platform that enabled running a wide variety of workloads with the highest degree of security, resilience, and scalability, and a high degree of automation (eg. Kubernetes) Source code repository system that allows teams to establish a single source of truth for configurations, ensuring version control, data governance, and compliance. (eg. Github, Gitlab, BitBucket) Control interface that enables everyone working on the application to interact with and manage its resources. (eg. Port or Backstage) Continuous integration and continuous deployment (CI/CD) pipeline that applies code and infrastructure configuration to an infrastructure platform. (eg. ArgoCD, Flux, CircleCI, Terraform, CloudFormation) Data layer that can handle changes to schemas and data structures. (eg. MongoDB Atlas) Security layer to manage permissions in order to keep compliance. Examples of this are roles-based compliance tools or secrets management tools (eg. Vault). While some tools have overlap and not all of them will be a part of a specific IDP, the goal of platform engineering efforts is to build an IDP for their developers that is tightly integrated with infrastructure resources and services to maximize automation, standardization, self-service, and scale for developers, as well as maximizing security whilst minimizing overhead for the enterprise. While there will be many different terms that different organizations and teams use to refer to their IDP story, at its core, an IDP is a tailored set of tech, tools, and processes , built and managed by a central team, and used to provide developers with golden paths that enable greater developer self-service, lower cognitive load, and reduce risk. How does MongoDB Atlas fit into this story? Developers often cite working with data as one of the most difficult aspects of building applications. Rigid and unintuitive data technologies impede building applications and can lead to project failure if they don’t deliver the data model flexibility and query functionality that your applications demand. A data layer that isn’t integrated into your workflows slows deployments, and manual operations are a never-ending drag on productivity. Failures and downtime lead to on-call emergencies – not to mention the enormous potential risk of a data breach. Therefore, making it easy to work with data is critical to improving the developer experience. IDPs are in part about giving developers the autonomy to build applications. For this reason, MongoDB’s developer data platform is a natural fit for an IDP because it serves as a developer data platform that can easily fit into any team’s existing toolstack and abstracts away the complexities associated with self-managing a data layer. MongoDB’s developer data platform is a step beyond a traditional database in that it helps organizations drive innovation at scale by providing a unified way to work with data that address transactional workloads, app-driven analytics, full-text search, vector search, stream data processing, and more, prioritizing an intuitive developer experience and automating security, resilience, and performance at scale. This simplification and broad coverage of different use cases make a monumental difference to the developer experience. By incorporating MongoDB Atlas within an IDP, developer teams have a fully managed developer data platform at their disposal that enables them to build and underpin best-in-class applications. This way teams won’t have to worry about adding the overhead and manual work involved in self-hosting a database and then building all these other supporting functionality that come out of the box with MongoDB Atlas. Lastly, MongoDB Atlas can be hosted on more cloud regions than any other cloud database in the market today with support for AWS, Azure, and Google Cloud. How can I incorporate MongoDB Atlas into my IDP? MongoDB Atlas’ Developer Data Platform offers many ways to integrate Atlas into their IDP through many tools that leverage the MongoDB Atlas Admin API. The Atlas Admin API can be used independently or via one of these tools/integrations and provides a programmatic interface to directly manage and automate various aspects of MongoDB Atlas, without needing to switch between UIs or incorporate manual scripts. These tools include: Atlas Kubernetes Operator HashiCorp Terraform Atlas Provider AWS CloudFormation Atlas Resources Atlas CDKs Atlas CLI Atlas Go SDK Atlas Admin API With the Atlas Kubernetes Operator, platform teams are able to seamlessly integrate MongoDB Atlas into the current Kubernetes deployment pipeline within their IDP allowing their developers to manage Atlas in the same way they manage their applications running in Kubernetes. First, configurations are stored and managed in a git repository and applied to Kubernetes via CD tools like ArgoCD or Flux. Then, Atlas Operator's custom resources are applied to Atlas using the Atlas Admin API and support all the building blocks you need, including projects, clusters, database users, IP access lists, private endpoints, backup, and more. For teams that want to take the IaC route in connecting Atlas to their IDP, Atlas offers integrations with HashiCorp Terraform and AWS CloudFormation which can also be used to programmatically spin up Atlas services off the IaC integrations built off the Atlas Admin API in the Cloud environment of their choice.. Through provisioning with Terraform, teams can deploy, update, and manage Atlas configurations as code with either the Terraform Provider or the CDKTF. MongoDB also makes it easier for Atlas customers who prefer using AWS CloudFormation to easily manage, provision, and deploy MongoDB Atlas services in three ways: through resources from the CloudFormation Public Registry, AWS Quick Starts, and the AWS CDK. Other programmatic ways that Atlas can be incorporated into an IDP are through Atlas CLI, which interacts with Atlas from a terminal with short and intuitive commands and accomplishes complex operational tasks such as creating a cluster or setting up an access list interactively Atlas Go SDK which provides platform-specific and Go language-specific tools, libraries, and documentation to help build applications quickly and easily Atlas Admin API provides a RESTful API, accessed over HTTPS, to interact directly with MongoDB Atlas control plane resources. The fastest way to get started is to create a MongoDB Atlas account from the AWS Marketplace , Azure Marketplace , or Google Cloud Marketplace . Go build with MongoDB Atlas today!

January 4, 2024

MongoDB Atlas AWS CloudFormation and CDK Integration Expansion

At MongoDB, we meet our developers where they’re at and offer multiple ways to get started and work with MongoDB Atlas . Since our GA launch of the MongoDB Atlas integration with the AWS CloudFormation Registry at the start of this year, users have had the freedom to manage their MongoDB Atlas resources using familiar YAML or JSON CloudFormation Templates. This provided developers and DevOps teams the core Infrastructure as Code (IaC) benefits: enhanced automation, version control, infrastructure consistency, and improved compliance. In addition to these updates, we went further and announced support for CDK at MongoDB.Local NYC in June 2023, which allowed development teams to leverage MongoDB Atlas resources natively in the language of their choice: JavaScript, TypeScript, Python, Java, Go, and C#. Today, just ahead of AWS re:Invent , we are excited to announce several key improvements and expansions to our AWS CloudFormation and CDK integrations that we hope will continue to make developers' lives even easier. New MongoDB Atlas resources on the AWS CloudFormation Registry Nine new MongoDB Atlas Resources have been published including Federated Database Instance , Serverless Private Endpoint , Programmatic API Keys Management , MongoDB Atlas Gov Support , and MongoDB Atlas Organization Management . This brings the total MongoDB Atlas Resources count on CloudFormation Registry to 42 and allows developers to do more with MongoDB Atlas and AWS CloudFormation. AWS region expansion Are you a developer based in or have your end customers in Hyderabad India , Melbourne Australia , Spain , Switzerland , or the UAE ? The good news, we have published all 42 Atlas Resources in each of these new AWS regions as well. Benefits include reduced latency and improved compliance with data sovereignty regulations. This brings the total MongoDB Atlas availability from 22 to 27 AWS regions on the AWS CloudFormation and CDK. New CDK level 3 resources The CDK provides different levels of abstraction for defining cloud resources: L1 constructs, which are direct mappings to AWS CloudFormation resources, and higher-level constructs like L2 and L3, which can provide high levels of abstraction. L3 constructs, also known as "Design Patterns" or "High-Level Constructs," combine multiple resources together in commonly used architectures with intelligent defaults, saving developers from manually having to glue L1 and L2 constructs together each time. Hence, we are happy to announce several new AWS CDK L3 resources including support for MongoDB Atlas Serverless . Migration to the Atlas Go SDK Lastly, we are delighted to have migrated our AWS CloudFormation resources to the new Atlas Go SDK . This is the middle layer that translates AWS CloudFormation calls to the Atlas Admin API (which is ultimately responsible for provisioning your MongoDB Atlas infrastructure). This migration goes a long way in accelerating our internal development velocity and enabling us to publish more MongoDB Atlas Resources on AWS CloudFormation soon after they go GA. Learn more about the key benefits of the Atlas Go SDK . Start building today These MongoDB Atlas integrations with AWS CloudFormation are free and open-source, licensed under the Apache License 2.0 . Users only pay for underlying MongoDB Atlas and AWS resources created and can get started building with the Atlas always-free tier ( M0 clusters ). Getting started today is faster than ever with MongoDB Atlas and AWS CloudFormation. We can’t wait to see what you will build next. Learn more on our MongoDB Atlas and AWS CloudFormation page.

November 27, 2023

MongoDB Atlas Integrations for CDKTF are now Generally Available

Infrastructure as Code (IaC) tools allows developers to manage and provision infrastructure resources through code, rather than through manual configuration. IaC have empowered developers to apply similar best practices from software development to application instructure deployments. This includes: Automation - helping to ensure repeatable, consistent, and reliable infrastructure deployments Version Control - check in IaC code into GitHub, BitBucket, or GitLab for improved team collaboration and higher code quality Security - create clear audit trails of each infrastructure modification Disaster Recovery - IaC scripts can be used to quickly recreate infrastructure in the event of availability zone or region outages Cost Savings - prevent overprovisioning and waste of cloud resources Improved Compliance - easier to enforce organizational policies and standards Today we are doubling down on this commitment and announcing MongoDB Atlas integrations with CDKTF (Cloud Development Kit for Terraform). These new integrations are built on top of the Atlas Admin API and allow users to automate infrastructure deployments by making it easy to provision, manage, and control Atlas infrastructure as code in the cloud without first having to create in HCL or YAML configuration scripts. CDKTF abstracts away the low-level details of cloud infrastructure, making it easier for developers to define and manage their infrastructure natively in their programming language of choice. Under the hood, CDKTF is converted into Terraform config files on your behalf. This helps to simplify the deployment process and eliminates context switching. MongoDB Atlas & HashiCorp Terraform: MongoDB began this journey with our partners at HashiCorp when we launched the HashiCorp Terraform MongoDB Atlas Provider in 2019. We then have since grown to 10M+ downloads over all time and our provider is the number one provider in the database category. Today we are delighted to support all CDKTF supported languages including JavaScript, TypeScript, Python, Java , Go, and .NET. In addition, with CDKTF users are free to deploy their MongoDB Atlas resources to AWS, Azure and Google Cloud enabling true multi-cloud deployments. Learn how to get started via this quick demo . Start building today! MongDB Atlas CDKTF integrations are free and open source licensed under Mozilla Public License 2.0 . Users only pay for underlying Atlas resources created and can get started with Atlas always free tier ( M0 clusters ). Getting started today is faster than ever with MongoDB Atlas and CDK for HashiCorp Terraform . We can’t wait to see what you will build next with this powerful combination! Learn more about MongoDB Atlas and CDK for Hashicorp Terraform

February 28, 2023

MongoDB Atlas Integrations for AWS CloudFormation and CDK are now Generally Available

Infrastructure as Code (IaC) tools allows developers to manage and provision infrastructure resources through code, rather than through manual configuration. IaC have empowered developers to apply similar best practices from software development to application instructure deployments. This includes: Automation - helping to ensure repeatable, consistent, and reliable infrastructure deployments Version Control - check in IaC code into GitHub, BitBucket, AWS CodeCommit, or GitLab for improved team collaboration and higher code quality Security - create clear audit trails of each infrastructure modification Disaster Recovery - IaC scripts can be used to quickly recreate infrastructure in the event of availability zone or region outages Cost Savings - prevent overprovisioning and waste of cloud resources Improved Compliance - easier to enforce organizational policies and standards Today we are doubling down on this commitment and announcing MongoDB Atlas integrations with AWS CloudFormation and Cloud Development Kit (CDK). AWS CloudFormation allows customers to define and provision infrastructure resources using JSON or YAML templates. CloudFormation provides a simple way to manage infrastructure as code and automate the deployment of resources. AWS Cloud Development Kit (CDK) is an open-source software development framework that allows customers to define cloud infrastructure in code and provision it through AWS CloudFormation. It supports multiple programming languages and allows customers to use high-level abstractions to define infrastructure resources. These new integrations are built on top of the Atlas Admin API and allow users to automate infrastructure deployments by making it easy to provision, manage, and control Atlas Infrastructure as Code in the cloud. MongoDB Atlas & AWS CloudFormation: To meet developers where they are, we now have multiple ways to get started with MongoDB Atlas using AWS Infrastructure as Code. Each of these allow users to provision, manage, and control Atlas infrastructure as code on AWS: Option 1: AWS CloudFormation Customers can begin their journey using Atlas resources directly from the AWS CloudFormation Public Registry . We currently have 33 Atlas Resources and will continue adding more. Examples of available Atlas resources today include: Dedicated Clusters, Serverless Instances, AWS PrivateLink , Cloud Backups, and Encryption at Rest using Customer Key Management. In addition, we have published these resources to 22 (and counting) AWS Regions where MongoDB Atlas is supported today. Learn how to get started via this quick demo . Option 2: AWS CDK After its launch in 2019 as an open source project, AWS CDK has gained immense popularity among the developer community with over a thousand external contributors and more than 1.3 million weekly downloads. AWS CDK abstracts away the low-level details of cloud infrastructure, making it easier for developers to define and manage their infrastructure natively in their programming language of choice. This helps to simplify the deployment process and eliminates context switching. Under the hood, AWS CDK synthesizes CloudFormation templates on your behalf which is then deployed to AWS accounts. In AWS CDK, L1 (Level 1) and L2 (Level 2) constructs refer to two different levels of abstraction for defining infrastructure resources: L1 constructs are lower-level abstractions that provide a one-to-one mapping to AWS CloudFormation resources. They are essentially AWS CloudFormation resources wrapped in code, making them easier to use in a programming context. L2 constructs are higher-level abstractions that provide a more user-friendly and intuitive way to define AWS infrastructure. They are built on top of L1 constructs and provide a simpler and more declarative API for defining resources. Today we announce MongoDB Atlas availability for AWS CDK in JavaScript and TypeScript, with plans for Python, Java, Go, and .NET support coming later in 2023. Now customers can easily deploy and manage all available Atlas resources by vending AWS CDK applications with prebuilt L1 Constructs. We also have a growing number of L2 and L3 CDK Constructs available. These include Constructs to help users to quickly deploy the core resources they need to get started with MongoDB Atlas on AWS in just a few lines JavaScript or TypeScript (see awscdk-resources-mongodbatlas to learn more). Users can also optionally select to add more advanced networking configurations such as VPC peering and AWS PrivateLink. Option 3: AWS Partner Solutions (previously AWS Quick Starts) Instead of manually pulling together multiple Atlas CloudFormation resources, AWS Partner Solutions gives customers access to pre-built CloudFormation templates for both general and specific use cases with MongoDB Atlas. By using AWS Partner Solution templates, customers can save time and effort compared to architecting their deployments from scratch. These were jointly created and incorporate best practices from MongoDB Atlas and AWS. Go to the AWS Partner Solutions Portal to get started. Start building today! These MongDB Atlas integrations with AWS CloudFormation are free and open source licensed under Apache License 2.0 . Users only pay for underlying Atlas resources created and can get started with Atlas always free tier ( M0 clusters ). Getting started today is faster than ever with MongoDB Atlas and AWS CloudFormation. We can’t wait to see what you will build next with this powerful combination! Learn more about MongoDB Atlas integrations with AWS CloudFormation

February 28, 2023