Phil Lewis, Pureinsights

3 results

AI-Driven Noise Analysis for Automotive Diagnostics

Aftersales service is a crucial revenue stream for the automotive industry, with leading manufacturers executing repairs through their dealer networks. One global automotive giant recently embarked on an ambitious project to revolutionize their diagnostic process. Their project—which aimed to increase efficiency, customer satisfaction, and revenue throughput—involved the development of an AI-powered solution that could quickly analyze engine sounds and compare them to a database of known problems, significantly reducing diagnostic times for complex engine issues. Traditional diagnostic methods can be time-consuming, expensive, and imprecise, especially for complex engine issues. MongoDB’s client in automotive manufacturing envisioned an AI-powered solution that could quickly analyze engine sounds and compare them to a database of known problems, significantly reducing diagnostic times. Initial setbacks, then a fresh perspective Despite the client team's best efforts, the project faced significant challenges and setbacks during the nine-month prototype phase. Though the team struggled to produce reliable results, they were determined to make the project a success. At this point, MongoDB introduced its client to Pureinsights , a specialized gen AI implementation and MongoDB AI Application Program partner , to rethink the solution and to salvage the project. As new members of the project team, and as Pureinsights’s CTO and Lead Architect, respectively, we brought a fresh perspective to the challenge. Figure 1: Before and after the AI-powered noise diagnostic solution A pragmatic approach: Text before sound Upon review, we discovered that the project had initially started with a text-based approach before being persuaded to switch to sound analysis. The Pureinsights team recommended reverting to text analysis as a foundational step before tackling the more complex audio problem. This strategy involved: Collecting text descriptions of car problems from technicians and customers. Comparing these descriptions against a vast database of known issues already stored in MongoDB. Utilizing advanced natural language processing, semantic / vector search, and Retrieval Augmented Generation techniques to identify similar cases and potential solutions. Our team tested six different models for cross-lingual semantic similarity, ultimately settling on Google's Gecko model for its superior performance across 11 languages. Pushing boundaries: Integrating audio analysis With the text-based foundation in place, we turned to audio analysis. Pureinsights developed an innovative approach to the project by combining our AI expertise with insights from advanced sound analysis research. We drew inspiration from groundbreaking models that had gained renown for their ability to identify cities solely from background noise in audio files. This blend of AI knowledge and specialized audio analysis techniques resulted in a robust, scalable system capable of isolating and analyzing engine sounds from various recordings. We adapted these sophisticated audio analysis models, originally designed for urban sound identification, to the specific challenges of automotive diagnostics. These learnings and adaptations are also applicable to future use cases for AI-driven audio analysis across various industries. This expertise was crucial in developing a sophisticated audio analysis model capable of: Isolating engine and car noises from customer or technician recordings. Converting these isolated sounds into vectors. Using these vectors to search the manufacturer's existing database of known car problem sounds. At the heart of this solution is MongoDB’s powerful database technology. The system leverages MongoDB’s vector and document stores to manage over 200,000 case files. Each "document" is more akin to a folder or case file containing: Structured data about the vehicle and reported issue Sound samples of the problem Unstructured text describing the symptoms and context This unified approach allows for seamless comparison of text and audio descriptions of customer engine problems using MongoDB's native vector search technology. Encouraging progress and phased implementation The solution's text component has already been rolled out to several dealers, and the audio similarity feature will be integrated in late 2024. This phased approach allows for real-world testing and refinement before a full-scale deployment across the entire repair network. The client is taking a pragmatic, step-by-step approach to implementation. If the initial partial rollout with audio diagnostics proves successful, the plan is to expand the solution more broadly across the dealer network. This cautious (yet forward-thinking) strategy aligns with the automotive industry's move towards more data-driven maintenance practices. As the solution continues to evolve, the team remains focused on enhancing its core capabilities in text and audio analysis for current diagnostic needs. The manufacturer is committed to evaluating the real-world impact of these innovations before considering potential future enhancements. This measured approach ensures that each phase of the rollout delivers tangible benefits in efficiency, accuracy, and customer satisfaction. By prioritizing current diagnostic capabilities and adopting a phased implementation strategy, the automotive giant is paving the way for a new era of efficiency and customer service in their aftersales operations. The success of this initial rollout will inform future directions and potential expansions of the AI-powered diagnostic system. A new era in automotive diagnostics The automotive giant brought industry expertise and a clear vision for improving their aftersales service. MongoDB provided the robust, flexible data platform essential for managing and analyzing diverse, multi-modal data types at scale. We, at Pureinsights, served as the AI application specialist partner, contributing critical AI and machine learning expertise, and bringing fresh perspectives and innovative approaches. We believe our role was pivotal in rethinking the solution and salvaging the project at a crucial juncture. This synergy of strengths allowed the entire project team to overcome initial setbacks and develop a groundbreaking solution that combines cutting-edge AI technologies with MongoDB's powerful data management capabilities. The result is a diagnostic tool leveraging text and audio analysis to significantly reduce diagnostic times, increase customer satisfaction, and boost revenue through the dealer network. The project's success underscores several key lessons: The value of persistence and flexibility in tackling complex challenges The importance of choosing the right technology partners The power of combining domain expertise with technological innovation The benefits of a phased, iterative approach to implementation As industries continue to evolve in the age of AI and big data, this collaborative model—bringing together industry leaders, technology providers, and specialized AI partners—sets a new standard for innovation. It demonstrates how companies can leverage partnerships to turn ambitious visions into reality, creating solutions that drive business value while enhancing customer experiences. The future of automotive diagnostics—and AI-driven solutions across industries—looks brighter thanks to the combined efforts of forward-thinking enterprises, cutting-edge database technologies like MongoDB, and specialized AI partners like Pureinsights. As this solution continues to evolve and deploy across the global dealer network, it paves the way for a new era of efficiency, accuracy, and customer satisfaction in the automotive industry. This solution has the potential to not only revolutionize automotive diagnostics but also set a new standard for AI-driven solutions in other industries, demonstrating the power of collaboration and innovation. To deliver more solutions like this—and to accelerate gen AI application development for organizations at every stage of their AI journey—Pureinsights has joined the MongoDB AI Application Program (MAAP). Check out the MAAP page to learn more about the program and how MAAP ecosystem members like Pureinsights can help your organization accelerate time-to-market, minimize risks, and maximize the value of your AI investments.

September 27, 2024

Powering Vector Search Maturity in Retail with Pureinsights

In a competitive retail market, with customer demands higher than ever, retailers are on a constant journey toward search maturity. With the recent announcement of MongoDB’s Vector Search offering , retailers are implementing smarter search solutions to provide customers and staff with delightful experiences. Here we’ll explore how partners like Pureinsights are helping retailers to understand what true search maturity entails, and how to start their vector search journey on MongoDB Atlas. Check out our AI resource page to learn more about building AI-powered apps with MongoDB. How MongoDB Partners Like Pureinsights Can Help Search and AI application specialists like Pureinsights can shorten the planning and development cycle, bring applications to production faster, and accelerate time to value for the customer. The Architecture of Vector Search Applications Virtually every Vector Search application will follow the basic logical flow illustrated below. A Client creates a complex query, which is then submitted to an encoder. The encoder turns the query into a Vector and submits it to the Vector Search Engine. The Vector Search engine searches the Vector Database and returns results, which are then formulated and returned to the Client for presentation. A complete Vector Search application includes all of the elements in this diagram, but not all of them are currently provided in the MongoDB Atlas platform. Everything to the left of the Vector Search Engine has to be developed by someone. MongoDB provides the vector store and a means to search it, but someone has to build the client and logic for the complete application. Why Involve Pureinsights to build your Vector Search applications? Pureinsights is a MongoDB BSI partner and has extensive knowledge and expertise in helping customers accelerate time-to-production of premier search applications. Pureinsights specializes in search applications and provides services to build end-to-end vector search solutions, including solutions to create and populate MongoDB Vector Search and UI/Client to search MongoDB Atlas using Atlas Search and Atlas Vector Search. Customers can focus on their core business while we do the development. Pureinsights Search Maturity Matrix – A Roadmap for Better Search, including Vector Search All of the use cases we discussed – e-commerce search, AI-powered search for support, and product information/reviews are advanced search features for Retail. But it’s always best to walk before you run, so before implementing Vector Search, a good strategy is to make sure your current applications have been optimized. Pureinsights methodology for search applications includes analyzing the state of current applications using a Search Maturity Matrix. Pureinsights - Design, Build, and Manage After mapping out their journey to build out advanced search capabilities for their retail applications, Pureinsights can help customers build the applications on the MongoDB Atlas Platform from design, to build, to operations. Application Design and Architecture: A well-defined plan is the key to efficient application development. Pureinsights with their immense experience can help with complex design decisions, such as choosing the right AI models and creating the best architecture for performance and security. Application Build: With over 20 years of experience in search, Pureinsights can help you build and deploy your Atlas Search application quickly and efficiently. Pureinsights has developed methodologies and frameworks like the Pureinsights Discovery Platform, which work with AI technologies (e.g., ChatGPT) and integrate with the Atlas platform to reduce development time and accelerate time to production. Managed services: Pureinsights can even run your search application for you with our SearchOps and maintain it for optimum performance with their fully managed service so you can focus on your core business. Conclusion Pureinsights can help customers overcome the challenges of building vector search applications and accelerate the time to production. With their expertise in application design, build, and managed services, Pureinsights can help customers build and deploy next-generation vector search applications that deliver real business value. Is your e-commerce store ready for AI? And are your products as easy to find as your competitors? Modern consumer expect flawless search experiences in mobile and online e-commerce search. Join MongoDB and Pureinsights on Tuesday, January 23, at 1pm ET for an insightful new webinar hosted by Digital Commerce 360 to learn: What is the search Maturity Matrix, and which capabilities are your organization missing to achieve better results How retailers are building smarter search applications with AI What's possible with MongoDB's new Vector Search offering Related resources: Modernize E-commerce Customer Experiences with MongoDB | MongoDB Head over to our quick-start guide to get started with Atlas Vector Search today. MongoDB Atlas for Retail: Driving Innovation from Supply Chain to Checkout | MongoDB MongoDB Atlas Search for Retail: Go Beyond the E-commerce Store | MongoDB

December 14, 2023

Search Modernization with Pureinsights and MongoDB Atlas Search

Search engines have transformed in recent years from basic tools used for retrieving data within an organization, searching product catalogs and ecommerce sites, to astonishing cognitive search tools. Cognitive search combines traditional search with knowledge graph and advanced AI technologies like natural language processing (NLP) and machine learning (ML). These technologies provide powerful search and discovery experiences for workplaces, ecommerce platforms, customer support, websites, or any applications where people are looking for information. Together with Pureinsights, MongoDB Atlas Search helps builders and developers achieve their moonshots for AI-enabled search technologies. Read this blog to learn how MongoDB’s partnership with Pureinsights is bringing futuristic search capabilities to businesses and agencies around the world. MongoDB Atlas Search + Pureinsights Discovery Platform The Pureinsights Discovery Platform™ (PDP) enhances traditional search engines and enables a ‘Google-like’ search experience. Built from best-in-class components and services, it uses a modern cloud-based architecture, and incorporates data connectors, content processing, AI services, a search engine (MongoDB Atlas Search) and knowledge graph. The AI services can include ML, modern transform models and large language models (LLMs). Used together these tools can provide powerful features such as: natural language queries, question answering and vector search/extractive answers. These features go way beyond what a typical enterprise search engine provides, enabling organizations to give their people the search experience they now expect. PDP also enables developers to ingest content and then process and enrich it to enhance search capabilities. PDP also provides tools to understand the intent of a user’s query so that we can deliver the most relevant, personalized and actionable search results. Six ways Pureinsights unleashes the full potential of MongoDB Atlas Search Pureinsights have been working with MongoDB to help clients realize the full potential of Atlas Search. Here is a selection of our search capabilities: Migration: Help with migrating a legacy search system such as Elasticsearch, Solr or MarkLogic to Atlas Search. Application build: Search applications can be complex and difficult to implement. Pureinsights can help you design, build and deploy your Atlas Search application and then work with you to maintain its performance. Modernization: We can use PDP to integrate AI technologies (e.g. ChatGPT) with Atlas Search to enable cognitive search features such as natural language queries, question answering and extractive answers. Relevancy tuning: Our expertise in search relevancy tuning and search engine scoring helps you develop a repeatable process to continually improve search engine results and relevancy. This proven methodology has helped our clients deliver optimized search experiences. Data engineering and transformation: Search application results are data-driven. Pureinsights can help you with data transformation, migration and enrichment to ensure the best possible search experience for your users. Managed services: And finally we can even run your search application for you with our SearchOps fully managed service so you can focus on your core business. Next steps Whether you are evaluating MongoDB Atlas or MongoDB Atlas Search, or ready to implement a solution Pureinsights can ensure that your project meets your technical and business goals. If you are already using MongoDB Atlas, then the decision to use Atlas Search should be an easy one. And if you have a separate search system then let us help you migrate to Atlas Search, for Pureinsights, it’s a well-trodden path. Pureinsights has certified MongoDB engineers who use best practice Agile and Lean principles to deliver successful projects. We can also assist you in realizing the full potential of your existing Atlas Search application or even take you beyond search by utilizing knowledge graphs, ML, and more to develop enterprise search applications that better understand user intent and deliver the information users require. Additional resources MongoDB Consulting and Implementation Services White Paper: Search is more than software Pureinsights Discovery Platform – Online

April 17, 2023